Destruction Aspects of the Surface Layer of Metal Surfaces during Shot Blasting

Article Preview

Abstract:

The manufacture and repair of mechanical engineering products and other industries is associated with the qualitative preparation of their surfaces for the application of protective non-metallic coatings on them, which ensures an increase in their durability and reliability. Among the methods of cleaning metal surfaces, the environmentally friendly and energy-saving crushing process occupies a priority place. Therefore, it is important to substantiate aspects of the destruction process of the metal products’ surface layer of mechanical engineering during shot blasting, depending on the process parameters, which allows more rational planning and a balanced technology for high-quality surface preparation of products. The results of experimental and analytical studies of the mechanism of destruction of the surface layer of steel specimens attacked by a shot, as well as a shot torch, depending on the specified parameters: angle and speed of attack, shot diameter and mechanical properties of the material are presented. The destruction coefficient is related to the ratio of the trace volume left by the pellet on the attacked surface to the pellet volume, which integrates the result of dynamic contact. The results obtained indicate that the degree of destruction intensity does not depend on the diameter of the shot and reaches a maximum at angles of attack at a given speed. The analytical setting of the destruction coefficient allows, without unnecessary technological samples, to balance the process parameters to achieve the required quality of surface cleaning at the lowest possible cost.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1168)

Pages:

3-11

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Goryk, S. Koval'chuk, O. Brykun, T Lapenko, The stability period of attacking shots in the process of shot blasting of metal surfaces, AIP Conference Proceedings. 2840(1) (2023).

DOI: 10.1063/5.0167634

Google Scholar

[2] A. Skoczylas, K. Zaleski, Study on the Surface Layer Properties and Fatigue Life of a Workpiece Machined by Centrifugal Shot Peening and Burnishing, Materials. 15 (2022).

DOI: 10.3390/ma15196677

Google Scholar

[3] O. Goryk, S. Koval'chuk, O. Brykun, S. Aksonov, Assessment of quality criteria of shot blasting cleaning of the inner surfaces of chemically resistant containers, Lecture Notes in Mechanical Engineering. (2023) 98–107.

DOI: 10.1007/978-3-031-18487-1_10

Google Scholar

[4] P. Mayer, A. Dmitruk, N. Leja, E. Pakiet, Pull-off strength of fibre-reinforced composite polymer coatings on steel substrate, Journal of Adhesion. 98(3) (2022) 286–304.

DOI: 10.1080/00218464.2020.1831478

Google Scholar

[5] Y. Y. Avcu, E. Iakovakis, M. Guney, E. Çalım, A. Özkılınç, E. Abakay, E. Avcu, Surface and tribological properties of powder metallurgical cp-ti titanium alloy modified by shot peening, Coatings. 13(1) (2023).

DOI: 10.3390/coatings13010089

Google Scholar

[6] N. Wang, J. Zhu, B. Liu, X. Zhang, J. Zhang, S. Tu, Influence of ultrasonic surface rolling process and shot peening on fretting fatigue performance of ti-6Al-4V, Chinese Journal of Mechanical Engineering. 34 (2021).

DOI: 10.1186/s10033-021-00611-1

Google Scholar

[7] Z.-C. Huang, Z.-J. Zhou, Y.-Q. Jiang, Effect of shot peening on static and fatigue properties of self–Piercing riveting joints. J. Mater. Res. Technol. 18 (2022) 1070–1080.

DOI: 10.1016/j.jmrt.2022.03.031

Google Scholar

[8] O. Haghighi, K. Amini, F. Gharavi, Effect of shot peening operation on the microstructure and wear behavior of AZ31 magnesium alloy, Protection of Metals and Physical Chemistry of Surfaces. 56(1) (2020) 164–168.

DOI: 10.1134/s2070205120010098

Google Scholar

[9] S. Zhang, B. Zou, Y. Liu, Y. Wang, C. Huang, Edge passivation and quality of carbide cutting inserts treated by wet micro-abrasive blasting. Int J Adv Manuf Technol. 96 (2018) 2307–2318.

DOI: 10.1007/s00170-018-1705-7

Google Scholar

[10] Y. Zhang, F. Lai, S. Qu, V. Ji, H. Liu, X. Li, Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel, Surface and Coatings Technology. 386, (2020).

DOI: 10.1016/j.surfcoat.2020.125497

Google Scholar

[11] M. Walczak, M. Szala, Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing, Archives of Civil and Mechanical Engineering. 21(4) (2021) 1–20.

DOI: 10.1007/s43452-021-00306-3

Google Scholar

[12] J. Liu, C. Ye, Y. Dong, Recent development of thermally assisted surface hardening techniques: A review, Advances in Industrial and Manufacturing Engineering. 2 (2021).

DOI: 10.1016/j.aime.2020.100006

Google Scholar

[13] A. Moradi, A. Heidari, K. Amini, F. Aghadavoudi, R. Abedinzadeh, Taguchi analysis of shot peening parameters for surface hardness, wear resistance, roughness, and residual stress in ti-6Al-4V alloy, Kovove Materialy. 60(4) (2022) 267–279.

DOI: 10.31577/km.2022.4.267

Google Scholar

[14] A. B. Edward, P. Stephan Heyns, S. Kok, A numerical investigation of a single-shot in a DEM-FEM approach to shot peening simulation, Metals. 9(11) (2019).

DOI: 10.3390/met9111183

Google Scholar

[15] H. Yuan, Z. You, Y. Zhuo, X. Ye, L. Zhu, W. Yang, Numerical and Experimental Study on Reasonable Coverage of Shot Peening on ZGMn13 High Manganese Steel. Front. Mater. 9:897718 (2022).

DOI: 10.3389/fmats.2022.897718

Google Scholar

[16] A. Goryk, S. Koval'chuk, O. Brykun, R. Chernyak, Viscoelastic Resistance of the Surface Layer of Steel Products to Shock Attack of a Spherical Pellet, Key Engineering Materials. 864 (2020) 217–227.

DOI: 10.4028/www.scientific.net/kem.864.217

Google Scholar

[17] T. Wang, J. B. Wang, X. J. Zhang, C. Liu, A study on energy conversion behavior of single-shot elastic-plastic impact during shot peen forming, International Journal of Impact Engineering. 176 (2023).

DOI: 10.1016/j.ijimpeng.2023.104566

Google Scholar

[18] J. Shao, S. Ding, Gю Wu, Z. Zhang, C. Li, Studies on residual stress and surface topography after pneumatic shot peening using discrete element method-finite element method coupled model. Proceedings of the Institution of Mechanical Engineers, Part L. 238(8) (2024) 1585-1604.

DOI: 10.1177/14644207241230751

Google Scholar

[19] J. Shortiss, D. Tanner, Residual stress prediction in shot blasted cobalt–chromium biomedical cast components, Materials Science and Technology (United Kingdom). 38(12) (2022) 853–865.

DOI: 10.1080/02670836.2022.2065764

Google Scholar

[20] L. Meng, Y. Shan, A.M. Khan, M. Jamil, N. He, Holistic 3D simulations and experimental investigation of surface quality and residual stresses in shot peening. Int J Adv Manuf Technol. 121 (2022) 1027–1047.

DOI: 10.1007/s00170-022-09273-2

Google Scholar

[21] J. Zhao, W. Zhou, J. Tang, T. Jiang, H. Liu, Analytical and experimental study on the surface generation mechanism in shot peening, Archives of Civil and Mechanical Engineering. 22(3) (2022).

DOI: 10.1007/s43452-022-00431-7

Google Scholar

[22] Z. Qin, B. Li, H. Zhang, T. Y. A. Wilfried, T. Gao, H. Xue, Effects of shot peening with different coverage on surface integrity and fatigue crack growth properties of 7B50-T7751 aluminum alloy. Engineering Failure Analysis. 133 (2021).

DOI: 10.1016/j.engfailanal.2021.106010

Google Scholar

[23] P. S. Reddy, P. R. Kumar, D. V. S. S. S. V. Prasad, B. S. Rani, C. H. L. N. Gupta, A. D. Das, R. Subbiah, Effect of parameters and surface analysis on eglin steel by shot blasting method, Materials Today: Proceedings. 72 (2023) 2833–2836.

DOI: 10.1016/j.matpr.2022.07.248

Google Scholar

[24] S.Wang, R. Hao, H. Liu, X. Wang, Q. Yang, Fracture behavior of the hot rolled Strip's surface scale layer from different impacts angles, Key Engineering Materials. 905 (2022)67-72.

DOI: 10.4028/www.scientific.net/kem.905.67

Google Scholar