Development of Cross-Linked Chitosan Films Reinforced with Chitin Nanofibers

Article Preview

Abstract:

The growing demand for sustainable alternatives to petroleum-based polymer materials has driven the development of bio-based materials. Among them, chitosan stands out as a promising biopolymer due to its biodegradability and biocompatibility. However, its hydrophilicity, causing high water absorption, limits its practical applications. In this study, tannic acid was employed as a cross-linking agent, and chitin nanofibers (ChNFs) were introduced as a reinforcing agent to enhance the properties of the chitosan-based films. The incorporation of ChNFs significantly improved the tensile stress of the films without compromising their transparency. Furthermore, the cross-linked chitosan films with ChNFs exhibited excellent UV-blocking capabilities. This highlights their potential as an alternative to conventional petroleum-based polymers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1168)

Pages:

59-64

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.E. Domínguez-Espinosa, A. Fuentes-Ruíz, A. Arreola-González, T.d.J. Jaime-Ornelas, M.A. Morales-Ovando, J.M.E. Hernández-Méndez, M.d.C. Hernández-Cruz, R.I. Cruz-Rodríguez, T. Romero-Cortés, J.M. Tirado-Gallegos, A. Cruz-Salomón, Edible coating based on banana starch and chitosan for postharvest conservation of guava, Journal of Food Processing and Preservation 46(1) (2022) e16154.

DOI: 10.1111/jfpp.16154

Google Scholar

[2] A. Boonmahitthisud, T. Wongjampee, S. Tanpichai, pH-responsive cross-linked chitin nanofiber-reinforced chitosan films with red cabbage anthocyanins for intelligent food packaging: Properties, freshness monitoring, and stability, Carbohydrate Polymers 356 (2025) 123373.

DOI: 10.1016/j.carbpol.2025.123373

Google Scholar

[3] P. Kaeokanphai, S. Tanpichai, A. Boonmahitthisud, Chitosan-based coating incorporated with chitin nanofibers for extension of the shelf life of fruits, Solid State Phenomena 356 (2024) 101-106.

DOI: 10.4028/p-90xwyy

Google Scholar

[4] T. Nishino, R. Matsui, K. Nakamae, Elastic modulus of the crystalline regions of chitin and chitosan, Journal of Polymer Science Part B: Polymer Physics 37(11) (1999) 1191-1196.

DOI: 10.1002/(sici)1099-0488(19990601)37:11<1191::aid-polb13>3.3.co;2-8

Google Scholar

[5] Y. Bamba, Y. Ogawa, T. Saito, L.A. Berglund, A. Isogai, Estimating the strength of single chitin nanofibrils via sonication-induced fragmentation, Biomacromolecules 18(12) (2017) 4405-4410.

DOI: 10.1021/acs.biomac.7b01467

Google Scholar

[6] S. Tanpichai, L. Pumpuang, Y. Srimarut, W. Woraprayote, Y. Malila, Development of chitin nanofiber coatings for prolonging shelf life and inhibiting bacterial growth on fresh cucumbers, Scientific Reports 13(1) (2023) 13195.

DOI: 10.1038/s41598-023-39739-6

Google Scholar

[7] A. Boonmahitthisud, K. Thongdonson, S. Tanpichai, Preparation of chitin nanofibers from shrimp shell waste by partial deacetylation and mechanical treatment, Journal of Natural Fibers 20(2) (2023) 2229515.

DOI: 10.1080/15440478.2023.2229515

Google Scholar

[8] L. Zhuang, X. Zhi, B. Du, S. Yuan, Preparation of elastic and antibacterial chitosan–citric membranes with high oxygen barrier ability by in situ cross-linking, ACS Omega 5(2) (2020) 1086-1097.

DOI: 10.1021/acsomega.9b03206

Google Scholar

[9] W.J. Grigsby, J.H. Bridson, C. Lomas, J.-A. Elliot, Esterification of condensed tannins and their impact on the properties of poly(lactic acid), Polymers 5(2) (2013) 344-360.

DOI: 10.3390/polym5020344

Google Scholar

[10] H. Dai, Y. Chen, H. Chen, Y. Fu, L. Ma, H. Wang, Y. Yu, H. Zhu, Y. Zhang, Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil, Food Chemistry 401 (2023) 134154.

DOI: 10.1016/j.foodchem.2022.134154

Google Scholar

[11] Y. Jing, Y. Diao, X. Yu, Free radical-mediated conjugation of chitosan with tannic acid: Characterization and antioxidant capacity, Reactive and Functional Polymers 135 (2019)16-22.

DOI: 10.1016/j.reactfunctpolym.2018.12.005

Google Scholar

[12] A. Boonmahitthisud, C. Booranapunpong, C. Pattaradechakul, S. Tanpichai, Development of water-resistant paper using chitosan and plant-based wax extracted from banana leaves, International Journal of Biological Macromolecules 240 (2023) 124412.

DOI: 10.1016/j.ijbiomac.2023.124412

Google Scholar

[13] G.R. Mahdavinia, A. Mosallanezhad, M. Soleymani, M. Sabzi, Magnetic- and pH-responsive kappa-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug, International Journal of Biological Macromolecules 97 (2017) 209-217.

DOI: 10.1016/j.ijbiomac.2017.01.012

Google Scholar

[14] M.-C. Li, Q. Wu, K. Song, H.N. Cheng, S. Suzuki, T. Lei, Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation, ACS Sustainable Chemistry & Engineering 4(8) (2016) 4385-4395.

DOI: 10.1021/acssuschemeng.6b00981

Google Scholar

[15] M.R. Kasaai, A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy, Carbohydrate Polymers 71(4) (2008) 497-508.

DOI: 10.1016/j.carbpol.2007.07.009

Google Scholar

[16] S.J. Lee, M.A. Gwak, K. Chathuranga, J.S. Lee, J. Koo, W.H. Park, Multifunctional chitosan/tannic acid composite films with improved anti-UV, antioxidant, and antimicrobial properties for active food packaging, Food Hydrocolloids 136 (2023) 108249.

DOI: 10.1016/j.foodhyd.2022.108249

Google Scholar

[17] V. Acharya, A. Ghosh, A.R. Chowdhury, P. Datta, Tannic acid-crosslinked chitosan matrices enhance osteogenic differentiation and modulate epigenetic status of cultured cells over glutaraldehyde crosslinking, Soft Materials 20(2) (2022) 149-160.

DOI: 10.1080/1539445x.2021.1933032

Google Scholar

[18] Kusmono, M.W. Wildan, F.I. Lubis, Fabrication and characterization of chitosan/cellulose nanocrystal/glycerol bio-composite films, Polymers 13(7) (2021) 1096.

DOI: 10.3390/polym13071096

Google Scholar

[19] N.V. Smirnova, K.A. Kolbe, E.N. Dresvyanina, S.F. Grebennikov, I.P. Dobrovolskaya, V.E. Yudin, T. Luxbacher, P. Morganti, Effect of chitin nanofibrils on biocompatibility and bioactivity of the chitosan-based composite film matrix intended for tissue engineering, Materials 12(11) (2019) 1874.

DOI: 10.3390/ma12111874

Google Scholar

[20] C.W. Irvin, C.C. Satam, J. Carson Meredith, M.L. Shofner, Mechanical reinforcement and thermal properties of PVA tricomponent nanocomposites with chitin nanofibers and cellulose nanocrystals, Composites Part A: Applied Science and Manufacturing 116 (2019) 147-157.

DOI: 10.1016/j.compositesa.2018.10.028

Google Scholar

[21] I. Kelnar, J. Kovářová, G. Tishchenko, L. Kaprálková, E. Pavlová, F. Carezzi, P. Morganti, Chitosan/chitin nanowhiskers composites: Effect of plasticisers on the mechanical behaviour, Journal of Polymer Research 22(2) (2015) 5.

DOI: 10.1007/s10965-014-0648-4

Google Scholar