[1]
Z. Fu, W. Liu, C. Huang, and T. Mei, "A Review of Performance Prediction Based on Machine Learning in Materials Science," Nanomaterials, vol. 12, no. 17, p.2957, Aug. 2022.
DOI: 10.3390/nano12172957
Google Scholar
[2]
L. Rahman and J. Goswami, "Poly(Vinyl Alcohol) as Sustainable and Eco-Friendly Packaging: A Review," J Packag Technol Res, vol. 7, no. 1, p.1–10, Mar. 2023.
DOI: 10.1007/s41783-022-00146-3
Google Scholar
[3]
T. T. Le, "Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method," J Compos Mater, vol. 55, no. 6, p.787–811, Mar. 2021.
DOI: 10.1177/0021998320953540
Google Scholar
[4]
C. Machello et al., "Tree-based machine learning approach to modelling tensile strength retention of Fibre Reinforced Polymer composites exposed to elevated temperatures," Compos B Eng, vol. 270, Feb. 2024.
DOI: 10.1016/j.compositesb.2023.111132
Google Scholar
[5]
O. Yasniy, P. Maruschak, A. Mykytyshyn, I. Didych, and D. Tymoshchuk, "Artificial intelligence as applied to classifying epoxy composites for aircraft," Aviation, vol. 29, no. 1, p.22–29, Feb. 2025.
DOI: 10.3846/aviation.2025.23149
Google Scholar
[6]
O. Yasniy, M. Mytnyk, P. Maruschak, A. Mykytyshyn, and I. Didych, "Machine learning methods as applied to modelling thermal conductivity of epoxy-based composites with different fillers for aircraft," Aviation, vol. 28, no. 2, p.64–71, May 2024.
DOI: 10.3846/aviation.2024.21472
Google Scholar
[7]
Google Research, "Google colaboratory." [Online]. Available: https://colab.research.google.com/
Google Scholar
[8]
G. Van Rossum and F. L. Drake Jr, "Python reference manual," 1995, Centrum voor Wiskunde en Informatica Amsterdam.
Google Scholar
[9]
F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, p.2825–2830, 2011.
Google Scholar
[10]
M. Ali, "PyCaret: An open source, low-code machine learning library in Python.," 2020. [Online]. Available: https://pycaret.gitbook.io/docs/
Google Scholar
[11]
L. Zhou, H. He, C. Jiang, L. I. Ma, and P. Yu, "Cellulose Nanocrystals from Cotton Stalk for Reinforcement of Poly(Vinyl Alcohol) Composites," Cellulose Chemistry and Technology, vol. 51, no. 1–2, p.109–119, 2017.
Google Scholar
[12]
J. Lamaming, R. Hashim, C. P. Leh, O. Sulaiman, and S. Z. Lamaming, "Bio-nanocomposite Films Reinforced with Various Types of Cellulose Nanocrystals Isolated from Oil Palm Biomass Waste," Waste Biomass Valorization, vol. 11, no. 12, p.7017–7027, Dec. 2020.
DOI: 10.1007/s12649-019-00892-7
Google Scholar
[13]
Z. Kassab, Y. Abdellaoui, M. H. Salim, R. Bouhfid, A. E. K. Qaiss, and M. El Achaby, "Micro- and nano-celluloses derived from hemp stalks and their effect as polymer reinforcing materials," Carbohydr Polym, vol. 245, Oct. 2020.
DOI: 10.1016/j.carbpol.2020.116506
Google Scholar
[14]
M. El Achaby, Z. Kassab, A. Aboulkas, C. Gaillard, and A. Barakat, "Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites," Int J Biol Macromol, vol. 106, p.681–691, Jan. 2018.
DOI: 10.1016/j.ijbiomac.2017.08.067
Google Scholar
[15]
Z. Kassab, M. El Achaby, Y. Tamraoui, H. Sehaqui, R. Bouhfid, and A. E. K. Qaiss, "Sunflower oil cake-derived cellulose nanocrystals: Extraction, physico-chemical characteristics and potential application," Int J Biol Macromol, vol. 136, p.241–252, Sep. 2019.
DOI: 10.1016/j.ijbiomac.2019.06.049
Google Scholar
[16]
T. M. Ejara, S. Balakrishnan, and J. C. Kim, "Nanocomposites of PVA/cellulose nanocrystals: Comparative and stretch drawn properties," SPE Polymers, vol. 2, no. 4, p.288–296, Oct. 2021.
DOI: 10.1002/pls2.10057
Google Scholar
[17]
F. Yudhanto, Jamasri, H. S. B. Rochardjo, and A. Kusumaatmaja, "Experimental study of polyvinyl alcohol nanocomposite film reinforced by cellulose nanofibers from agave cantala," International Journal of Engineering, Transactions A: Basics, vol. 34, no. 4, p.987–998, Apr. 2021.
DOI: 10.5829/ije.2021.34.04a.25
Google Scholar
[18]
E. Fortunati, D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman, and J. M. Kenny, "Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites," J Appl Polym Sci, vol. 128, no. 5, p.3220–3230, Jun. 2013.
DOI: 10.1002/app.38524
Google Scholar
[19]
B. Kord, B. Malekian, H. Yousefi, and A. Najafi, "Preparation and characterization of nanofibrillated cellulose/Poly (vinyl alcohol) composite films," Maderas: Ciencia y Tecnologia, vol. 18, no. 4, p.743–752, 2016.
DOI: 10.4067/S0718-221X2016005000065
Google Scholar
[20]
S. Aprilia, N. Razali, Y. Syamsuddin, A. H. P. S. Khalil, and D. Syafrina, "Composites polyvinyl alcohol filled with nanocellulose from oil palm waste by formic acid hydrolysis," MATEC Web of Conferences, vol. 268, p.04012, 2019.
DOI: 10.1051/matecconf/201926804012
Google Scholar
[21]
L. Jasmani and S. Adnan, "Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential," Carbohydr Polym, vol. 161, p.166–171, Apr. 2017.
DOI: 10.1016/j.carbpol.2016.12.061
Google Scholar
[22]
Z. Jahan, M. B. K. Niazi, and Ø. W. Gregersen, "Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes," Journal of Industrial and Engineering Chemistry, vol. 57, p.113–124, Jan. 2018.
DOI: 10.1016/j.jiec.2017.08.014
Google Scholar
[23]
M. Roohani, Y. Habibi, N. M. Belgacem, G. Ebrahim, A. N. Karimi, and A. Dufresne, "Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites," Eur Polym J, vol. 44, no. 8, p.2489–2498, Aug. 2008.
DOI: 10.1016/j.eurpolymj.2008.05.024
Google Scholar
[24]
B. H. Patel and P. V. Joshi, "Banana Nanocellulose Fiber/PVOH Composite Film as Soluble Packaging Material: Preparation and Characterization," J Packag Technol Res, vol. 4, no. 1, p.95–101, Mar. 2020.
DOI: 10.1007/s41783-020-00083-z
Google Scholar
[25]
T. Sultana, S. Sultana, H. P. Nur, and M. W. Khan, "Studies on mechanical, thermal and morphological properties of betel nut husk nano cellulose reinforced biodegradable polymer composites," Journal of Composites Science, vol. 4, no. 3, 2020.
DOI: 10.3390/jcs4030083
Google Scholar
[26]
M. Mahardika et al., "Nanocellulose reinforced polyvinyl alcohol-based bio-nanocomposite films: improved mechanical, UV-light barrier, and thermal properties," RSC Adv, vol. 14, no. 32, p.23232–23239, Jul. 2024.
DOI: 10.1039/d4ra04205k
Google Scholar
[27]
M. J. Cho and B. D. Park, "Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites," Journal of Industrial and Engineering Chemistry, vol. 17, no. 1, p.36–40, Jan. 2011.
DOI: 10.1016/j.jiec.2010.10.006
Google Scholar
[28]
Z. Zhang, X. Liu, H. X. Wang, H. F. He, and R. Bai, "Preparation and characterization of Enteromorpha prolifera nanocellulose/polyvinyl alcohol composite films," Polym Compos, vol. 42, no. 4, p.1712–1726, Apr. 2021.
DOI: 10.1002/pc.25926
Google Scholar
[29]
F. Handoko and Y. Yusuf, "Synthesis and physicochemical properties of poly(Vinyl) alcohol nanocomposites reinforced with nanocrystalline cellulose from tea (camellia sinensis) waste," Materials, vol. 14, no. 23, Dec. 2021.
DOI: 10.3390/ma14237154
Google Scholar
[30]
M. Suresh, R. Taib, Y. Zhao, and W. Jin, "Sharpening the BLADE: Missing Data Imputation Using Supervised Machine Learning," in AI 2019: Advances in Artificial Intelligence, vol. 11919, J. Liu and J. Bailey, Eds., Cham: Springer International Publishing, 2019.
DOI: 10.1007/978-3-030-35288-2
Google Scholar
[31]
Z. Wang, L. Mu, H. Miao, Y. Shang, H. Yin, and M. Dong, "An innovative application of machine learning in prediction of the syngas properties of biomass chemical looping gasification based on extra trees regression algorithm," Energy, vol. 275, p.127438, Jul. 2023.
DOI: 10.1016/j.energy.2023.127438
Google Scholar
[32]
L. Yang and A. Shami, "On hyperparameter optimization of machine learning algorithms: Theory and practice," Neurocomputing, vol. 415, p.295–316, Nov. 2020.
DOI: 10.1016/j.neucom.2020.07.061
Google Scholar
[33]
B. S. Chandar, P. Ranganathan, and W. Semke, "Imputing ADS-B/GPS Dropouts using Machine Learning Models," in 2024 IEEE 14th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Jan. 2024, p.0063–0072.
DOI: 10.1109/CCWC60891.2024.10427858
Google Scholar
[34]
Y. Zhang and X. Xu, "Machine learning tensile strength and impact toughness of wheat straw reinforced composites," Machine Learning with Applications, vol. 6, p.100188, Dec. 2021.
DOI: 10.1016/j.mlwa.2021.100188
Google Scholar
[35]
S. Dong, X. Wu, X. Qi, C. Affolter, G. P. Terrasi, and G. Xian, "Prediction model of long-term tensile strength of glass fiber reinforced polymer bars exposed to alkaline solution based on Bayesian optimized artificial neural network," Constr Build Mater, vol. 400, p.132885, Oct. 2023.
DOI: 10.1016/j.conbuildmat.2023.132885
Google Scholar
[36]
B. Liu, N. Vu-Bac, X. Zhuang, X. Fu, and T. Rabczuk, "Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites," Compos Sci Technol, vol. 224, p.109425, Jun. 2022.
DOI: 10.1016/j.compscitech.2022.109425
Google Scholar