Advances in Magnetic Spinel Ferrites as photocatalysts for waste water treatment: A Review

Article Preview

Abstract:

This review highlights the recent advancements in the synthesis and application of magnetic spinel ferrites (SFs) for wastewater treatment, focusing on their photocatalytic and adsorptive properties. SF nanoparticles, with unique characteristics such as high surface area, tunable magnetic properties, and chemical stability, offer efficient pollutant degradation and recovery via magnetic separation. Various synthesis techniques, including sol-gel, hydrothermal, and solution combustion, have been explored to enhance their morphology, porosity, and catalytic efficiency. SFs demonstrate exceptional performance in degrading organic pollutants, dyes, and pharmaceutical contaminants under visible light, leveraging their photocatalytic and adsorption mechanisms. The effectiveness is further increased by combining SFs with advanced materials including g-C3N4 and r-GO. A worldwide sustainable water treatment issue makes this study significant because SFs present scalable environmentally friendly solutions that have revolutionary potential.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1168)

Pages:

103-115

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lu, Feng, and Didier Astruc. "Nanocatalysts and Other Nanomaterials for Water Remediation from Organic Pollutants." Coordination Chemistry Reviews 408 (2020): 213180.

DOI: 10.1016/j.ccr.2020.213180

Google Scholar

[2] Tadi, Kiran Kumar, N. Mahendar Reddy, Ch. G. Chandaluri, Gowri Priya Sakala, and Gubbala V. Ramesh. "Functionalized Biopolymer Nanocomposites for the Degradation of Textile Dyes." Functional Polymer Nanocomposites for Wastewater Treatment, 2022, 175-200.

DOI: 10.1007/978-3-030-94995-2_6

Google Scholar

[3] Sall, Mohamed Lamine, Abdou Karim Diagne Diaw, Diariatou Gningue-Sall, Snezana Efremova Aaron, and Jean-Jacques Aaron. "Toxic Heavy Metals: Impact on the Environment and Human Health, and Treatment with Conducting Organic Polymers, a Review." Environmental Science and Pollution Research 27, no. 24 (2020): 29927-42.

DOI: 10.1007/s11356-020-09354-3

Google Scholar

[4] Saravanan, A., P. Senthil Kumar, S. Jeevanantham, S. Karishma, B. Tajsabreen, P.R. Yaashikaa, and B. Reshma. "Effective Water/Wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications towards Sustainable Development." Chemosphere 280 (2021): 130595.

DOI: 10.1016/j.chemosphere.2021.130595

Google Scholar

[5] Xu, Wenjing, Yaocai Bai, and Yadong Yin. "Surface Engineering of Nanostructured Energy Materials." Advanced Materials 30, no. 48 (2018)

DOI: 10.1002/adma.201802091

Google Scholar

[6] Ramesh, Gubbala V., N. Mahendar Reddy, Muvva D. Prasad, D. Saritha, and Kola Ramesh. "2D Nanomaterials for Photocatalysis and Photoelectrocatalysis." 2D Functional Nanomaterials, (2021): 383-411

DOI: 10.1002/9783527823963.ch22

Google Scholar

[7] Ghadimi, Mehrnoosh, Sasan Zangenehtabar, and Shahin Homaeigohar. "An Overview of the Water Remediation Potential of Nanomaterials and Their Ecotoxicological Impacts." Water 12, no. 4 (2020): 1150.

DOI: 10.3390/w12041150

Google Scholar

[8] Beyecha, Wegene Lelisa, Misikir Tamiru Asefa, and Gebisa Bekele Feyisa. "Study on Challenges and Solutions for Enhancing Photocatalytic Activities of Ag3PO4 Nanoparticles for Degradation of Organic Dyes from Wastewater." Edited by Baskaran Rangasamy. Journal of Nanomaterials 2022 (2022): 1-20.

DOI: 10.1155/2022/5564667

Google Scholar

[9] Oladipo, Akeem Adeyemi, and Faisal Suleiman Mustafa. "Bismuth-Based Nanostructured Photocatalysts for the Remediation of Antibiotics and Organic Dyes." Beilstein Journal of Nanotechnology 14 (2023): 291-321.

DOI: 10.3762/bjnano.14.26

Google Scholar

[10] Wang, Ting, Shali Ai, Yaoyu Zhou, Zirui Luo, Chunhao Dai, Yuan Yang, Jiachao Zhang, Hongli Huang, Shuang Luo, and Lin Luo. "Adsorption of Agricultural Wastewater Contaminated with Antibiotics, Pesticides and Toxic Metals by Functionalized Magnetic Nanoparticles." Journal of Environmental Chemical Engineering 6, no. 5 (2018): 6468-78.

DOI: 10.1016/j.jece.2018.10.014

Google Scholar

[11] Tatarchuk, Tetiana, Alexander Shyichuk, Zbigniew Sojka, Joanna Gryboś, Mu. Naushad, Volodymyr Kotsyubynsky, Maria Kowalska, Sylwia Kwiatkowska-Marks, and Nazarii Danyliuk. "Green Synthesis, Structure, Cations Distribution and Bonding Characteristics of Superparamagnetic Cobalt-Zinc Ferrites Nanoparticles for Pb(II) Adsorption and Magnetic Hyperthermia Applications." Journal of Molecular Liquids 328 (2021): 115375.

DOI: 10.1016/j.molliq.2021.115375

Google Scholar

[12] Odio, Oscar F., and Edilso Reguera. "Nanostructured Spinel Ferrites: Synthesis, Functionalization, Nanomagnetism and Environmental Applications." Magnetic Spinels - Synthesis, Properties and Applications, (2017).

DOI: 10.5772/67513

Google Scholar

[13] Kefeni, Kebede Keterew, and Bhekie B. Mamba. "Photocatalytic Application of Spinel Ferrite Nanoparticles and Nanocomposites in Wastewater Treatment: Review." Sustainable Materials and Technologies 23 (2020): e00140.

DOI: 10.1016/j.susmat.2019.e00140

Google Scholar

[14] Takkar, Rajat, Baljinder Kaur, Shikha Rana, Pankaj Kumar, Partha Khanra, and Meenakshi Dhiman. "Usage of Magnetic Spinel Nano-Ferrites in Waste Water Treatment." ECS Transactions 107, no. 1 (2022): 10237-44.

DOI: 10.1149/10701.10237ecst

Google Scholar

[15] Ghasemi, Ali. "Nanoferrite Photocatalysts." Magnetic Ferrites and Related Nanocomposites, 2022, 521-85.

DOI: 10.1016/b978-0-12-824014-4.00006-8

Google Scholar

[16] Dojcinovic, Milena P., Zorka Z. Vasiljevic, Vera P. Pavlovic, Dario Barisic, Damir Pajic, Nenad B. Tadic, and Maria Vesna Nikolic. "Mixed Mg-Co Spinel Ferrites: Structure, Morphology, Magnetic and Photocatalytic Properties." Journal of Alloys and Compounds 855 (2021): 157429.

DOI: 10.1016/j.jallcom.2020.157429

Google Scholar

[17] Lincho, João, Adriana Zaleska-Medynska, Rui C. Martins, and João Gomes. "Nanostructured Photocatalysts for the Abatement of Contaminants by Photocatalysis and Photocatalytic Ozonation: An Overview." Science of The Total Environment 837 (2022): 155776.

DOI: 10.1016/j.scitotenv.2022.155776

Google Scholar

[18] Casbeer, Erik, Virender K. Sharma, and Xiang-Zhong Li. "Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A Review." Separation and Purification Technology 87 (2012): 1-14.

DOI: 10.1016/j.seppur.2011.11.034

Google Scholar

[19] Arumugham, Nagaveni, Anusuya Mariappan, Jayanthi Eswaran, Santhanaraj Daniel, Rajakumar Kanthapazham, and Poonkodi Kathirvel. "Nickel Ferrite-Based Composites and Its Photocatalytic Application - A Review." Journal of Hazardous Materials Advances 8 (2022): 100156.

DOI: 10.1016/j.hazadv.2022.100156

Google Scholar

[20] Jarusheh, Hebah Sami, Ahmed Yusuf, Fawzi Banat, Mohammad Abu Haija, and Giovanni Palmisano. "Integrated Photocatalytic Technologies in Water Treatment Using Ferrites Nanoparticles." Journal of Environmental Chemical Engineering 10, no. 5 (2022): 108204.

DOI: 10.1016/j.jece.2022.108204

Google Scholar

[21] Sun, Jingwen, Ting Wu, Zhifeng Liu, Binbin Shao, Qinghua Liang, Qingyun He, Songhao Luo, Yuan Pan, Chenhui Zhao, and Danlian Huang. "Peroxymonosulfate Activation Induced by Spinel Ferrite Nanoparticles and Their Nanocomposites for Organic Pollutants Removal: A Review." Journal of Cleaner Production 346 (2022): 131143.

DOI: 10.1016/j.jclepro.2022.131143

Google Scholar

[22] Varpe, Ashwini S., Mrinalini D. Deshpande, Dipak R. Tope, and Ashok V. Borhade. "Enhanced Photocatalytic Performance of CdFe2O4/Al2O3 Nanocomposite for Dye Degradation." Environmental Science and Pollution Research 30, no. 18 (2023): 52549-60.

DOI: 10.1007/s11356-022-24834-4

Google Scholar

[23] Grecu, Ionela, Petrisor Samoila, Petronela Pascariu, Corneliu Cojocaru, Maria Ignat, IoanAndrei Dascalu, and Valeria Harabagiu. "Enhanced Photodegradation of Organic Pollutants by Novel Samarium-Doped Zinc Aluminium Spinel Ferrites." Catalysts 13, no. 2 (2023): 266.

DOI: 10.3390/catal13020266

Google Scholar

[24] Shume, Workneh Mechal, Enyew Zereffa, C R Ravikumar, Sanaulla Pathapalya Fakrudeen, Kah-Yoong Chan, and H C Ananda Murthy. "Lanthanum Substituted Ni-Zn Ferrite (Ni0.75Zn0.25Fe2O4) Nanomaterial and Its Composite with rGO for Degradation of Binary Dyes under Visible Light Irradiation." Materials Research Express 10, no. 5 (2023): 055005

DOI: 10.1088/2053-1591/acd50e

Google Scholar

[25] Malik, Rupal, Twinkle Garg, Vinod Kumar, K. B. Tikoo, Bhupendra Chudasama, and Sonal Singhal. "Lanthanide Loaded Dopamine Modified Spinel Nanoferrites: Novel Photocatalyst with Enhanced Catalytic Activity." Journal of Sol-Gel Science and Technology 106, no. 1 (2023): 199-214

DOI: 10.1007/s10971-022-06000-x

Google Scholar

[26] Swamy, S., D.B. Aruna Kumar, K. Gurushantha, S. Meena, K. Keshavamurthy, and N. Basavaraju. "Structural and Multiple Applicational Studies of Alkaline Earth Metal Spinel (AB2O4) Ferrites." Asian Journal of Chemistry 35, no. 8 (2023): 1891-98

DOI: 10.14233/ajchem.2023.28049

Google Scholar

[27] Dhiman, Pooja, Garima Rana, Razan A. Alshgari, Amit Kumar, Gaurav Sharma, Mu. Naushad, and Zeid A. ALOthman. "'Magnetic Ni-Zn Ferrite Anchored on g-C3N4 as Nano-Photocatalyst for Efficient Photo-Degradation of Doxycycline from Water.'" Environmental Research 216 (2023): 114665

DOI: 10.1016/j.envres.2022.114665

Google Scholar

[28] Jarariya, Rahul, and K. Suresh. "Spinel Ferrite Nanomaterials - MgFe2O4 - Synthesis by Appropriate Microwave Solution Combustion (Msc) Method of Visible Light-Responsive Photocatalyst for Rb21 Dye Degradation." Materials Today: Proceedings 72 (2023): 2618-29

DOI: 10.1016/j.matpr.2022.07.393

Google Scholar

[29] Ramadevi, P., G. Vinodhkumar, and Ra. Shanmugavadivu. "An Efficient Visible Light Driven Photocatalyst Based on CuFe2O4/rGO Nanocomposites for Effective Degradation of Methylene Blue Dye." Optik 277 (2023): 170713.

DOI: 10.1016/j.ijleo.2023.170713

Google Scholar

[30] Harikrishnan, Leelavathi, and Arulmozhi Rajaram. "Constructive Z-Scheme Interfacial Charge Transfer of a Spinel Ferrite-Supported g-C3N4 Heterojunction Architect for Photocatalytic Degradation." Journal of Alloys and Compounds 976 (2024): 172987

DOI: 10.1016/j.jallcom.2023.172987

Google Scholar

[31] Alsalmah, Hessa A. "Synergistic Effects of Co-Doping and rGO Reinforcement to Boost the Structural, Electrical, Optical, and Photocatalytic Properties of Manganese Ferrite." Ceramics International 50, no. 3 (2024): 4687-98

DOI: 10.1016/j.ceramint.2023.11.213

Google Scholar

[32] Henaish, A. M. A., H. R. Darwish, T. Sharshar, M. R. Eraky, O. M. Hemeda, and Ahmed Elmekawy. "Study the Effect of Microstructure Changes on the Photocatalytic Performance of Ni and Zn Nanoferrites." Applied Physics A 129, no. 11 (2023)

DOI: 10.1007/s00339-023-06999-y

Google Scholar

[33] Abou Taleb, Manal F., Tabinda Rasheed, Hanan A. Albalwi, Faten Ismail Abou El Fadl, Muhammad Farooq Warsi, and Mohamed M. Ibrahim. "Binary Metal Doped Spinel Ferrite Nanoparticles and Their Nano Hybrid with MXene Matrix to Enhance Catalytic Properties." Optical Materials 145 (2023): 114485.

DOI: 10.1016/j.optmat.2023.114485

Google Scholar

[34] Rosales-González, O., A.M. Bolarín-Miró, C.A. Cortés-Escobedo, F. Pedro-García, J.A. Patiño-Pineda, and F. Sánchez-De Jesús. "Synthesis of a Magnetically Removable VisibleLight Photocatalyst Based on Nickel-Doped Zinc Ferrite." Ceramics International 49, no. 4 (2023): 6006-14

DOI: 10.1016/j.ceramint.2022.10.101

Google Scholar

[35] Molčanov, Lidija, Lidija Androš Dubraja, Martina Vrankić, and Marijana Jurić. "A 3D Oxalate- bridged [CuIIFeII] Coordination Polymer as Molecular Precursor for CuFe2O4 Spinel- Photocatalytic Features." Journal of the American Ceramic Society 106, no. 5 (2023): 2997- 3008

DOI: 10.1111/jace.18982

Google Scholar

[36] Baig, Mutawara Mahmood Baig Mutawara Mahmood, Erum Pervaiz Erum Pervaiz, and Muhammad Junaid Afzal Muhammad Junaid Afzal. "Catalytic Activity and Kinetic Studies of Core@Shell Nanostructure NiFe2O4@TiO2 for Photocatalytic Degradation of Methyl Orange Dye." Journal of the Chemical Society of Pakistan 42, no. 4 (2020): 531.

DOI: 10.52568/000669

Google Scholar

[37] Hamad, Hesham, Mona Abd El-Latif, Abd El-Hady Kashyout, Wagih Sadik, and Mohamed Feteha. "Synthesis and Characterization of Core-Shell-Shell Magnetic (CoFe2O4-SiO2-TiO2) Nanocomposites and TiO2 nanoparticles for the Evaluation of Photocatalytic Activity under UV and Visible Irradiation." New Journal of Chemistry 39, no. 4 (2015): 3116-28.

DOI: 10.1039/c4nj01821d

Google Scholar

[38] Mrotek, Eryka, Szymon Dudziak, Izabela Malinowska, Daniel Pelczarski, Zuzanna Ryżyńska, and Anna Zielińska-Jurek. "Improved Degradation of Etodolac in the Presence of Core-Shell ZnFe2O4/SiO2/TiO2 Magnetic Photocatalyst." The Science of the Total Environment 724 (2020): 138167.

DOI: 10.1016/j.scitotenv.2020.138167

Google Scholar

[39] Kulkarni, Suresh D., Sagar Kumbar, Samvit G. Menon, K.S. Choudhari, and Santhosh C. "Magnetically Separable Core-Shell ZnFe2O4@ZnO Nanoparticles for Visible Light Photodegradation of Methyl Orange." Materials Research Bulletin 77 (2016): 70-77.

DOI: 10.1016/j.materresbull.2016.01.022

Google Scholar

[40] Zhu, Hua-Yue, Ru Jiang, Yong-Qian Fu, Rong-Rong Li, Jun Yao, and Sheng-Tao Jiang. "Novel Multifunctional NiFe2O4 /ZnO Hybrids for Dye Removal by Adsorption, Photocatalysis and Magnetic Separation." Applied Surface Science 369 (2016): 1-10.

DOI: 10.1016/j.apsusc.2016.02.025

Google Scholar

[41] Ferdosi, E., H. Bahiraei, and D. Ghanbari. "Investigation the Photocatalytic Activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag Nanocomposites for Purification of Dye Pollutants." Separation and Purification Technology 211 (2018): 35-39.

DOI: 10.1016/j.seppur.2018.09.054

Google Scholar

[42] Jarariya, Rahul, and K. Suresh. "Spinel Ferrite Nanomaterials - MgFe2O4 - Synthesis by Appropriate Microwave Solution Combustion (Msc) Method of Visible Light-Responsive Photocatalyst for Rb21 Dye Degradation." Materials Today Proceedings 72 (2022): 2618-29.

DOI: 10.1016/j.matpr.2022.07.393

Google Scholar

[43] Zhang, Han, Fanming Meng, Hainan Wei, Wenqing Yu, and Sheng Yao. "Novel Z-Scheme MgFe2O4/Bi2WO6 Heterojunction for Efficient Photocatalytic Degradation of Tetracycline Hydrochloride: Mechanistic Insight, Degradation Pathways and Density Functional Theory Calculations." Journal of Colloid and Interface Science 652 (2023): 1282-96.

DOI: 10.1016/j.jcis.2023.08.164

Google Scholar

[44] Waheed, Ibrahim F., Omer Yasin Thayee Al-Janabi, and Peter J.S. Foot. "Novel MgFe2O4CuO/GO Heterojunction Magnetic Nanocomposite: Synthesis, Characterization, and Batch Photocatalytic Degradation of Methylene Blue Dye." Journal of Molecular Liquids 357 (2022): 119084.

DOI: 10.1016/j.molliq.2022.119084

Google Scholar

[45] Shahid, Muhammad, Liu Jingling, Zahid Ali, Imran Shakir, Muhammad Farooq Warsi, Riffat Parveen, and Muhammad Nadeem. "Photocatalytic Degradation of Methylene Blue on Magnetically Separable MgFe2O4 under Visible Light Irradiation." Materials Chemistry and Physics 139, no. 2-3 (2013): 566-71.

DOI: 10.1016/j.matchemphys.2013.01.058

Google Scholar

[46] Nguyen, Loan T. T., Lan T. H. Nguyen, Nhuong Chu Manh, Dung Nguyen Quoc, Hai Nguyen Quang, Hang T. T. Nguyen, Duy Chinh Nguyen, and Long Giang Bach. "A Facile Synthesis, Characterization, and Photocatalytic Activity of Magnesium Ferrite Nanoparticles via the Solution Combustion Method." Journal of Chemistry (2019): 1-8.

DOI: 10.1155/2019/3428681

Google Scholar

[47] Heidari, P., and S.M. Masoudpanah. "A Facial Synthesis of MgFe2O4/RGO Nanocomposite Powders as a High Performance Microwave Absorber." Journal of Alloys and Compounds 834 (2020): 155166.

DOI: 10.1016/j.jallcom.2020.155166

Google Scholar

[48] Basfer, N.M., and Nuha Al-Harbi. "Structural, Optical and Photocatalytic Activity of Ce3+ Doped Co-Mg Nanoparticles for Wastewater Treatment Applications." Journal of King Saud University - Science 35, no. 1 (2022): 102436.

DOI: 10.1016/j.jksus.2022.102436

Google Scholar

[49] Abraham, A. Godlyn, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, and P. Sri Renganathan. "Enhanced Magneto-Optical and Photo-Catalytic Properties of Transition Metal Cobalt (Co2+ Ions) Doped Spinel MgFe2O4 Ferrite Nanocomposites." Journal of Magnetism and Magnetic Materials 452 (2018): 380-88. https://doi.org/10.1016/j.jmmm. 2018.01.001.

DOI: 10.1016/j.jmmm.2018.01.001

Google Scholar

[50] Mostafa, Nasser Y., Z. Zaki, M. M. Hessien, A. A. Shaltout, and M. Alsawat. "Enhancing Saturation Magnetization of Mg Ferrite Nanoparticles for Better Magnetic Recoverable Photocatalyst." Applied Physics A 124, no. 12 (2018).

DOI: 10.1007/s00339-018-2268-z

Google Scholar