[1]
V. S. De Viteri, M. G. Barandika, U. Ruiz de Gopegui, R Bayón, C Zubizarreta, X Fernández, A Igartua, F Agullo-Rueda, "Characterization of Ti-C-N coatings deposited on Ti6Al4V for biomedical applications," in Journal of Inorganic Biochemistry, 117 (2012) 359–366.
DOI: 10.1016/j.jinorgbio.2012.09.012
Google Scholar
[2]
H. F. Li, J. Y. Huang, G. C. Lin, and P. Y. Wang, "Recent advances in tribological and wear properties of biomedical metallic materials," Rare Metals. (2021) 40(11):3091–3106.
DOI: 10.1007/s12598-021-01796-z
Google Scholar
[3]
F. Bartolomeu et al., "Multi-material Ti6Al4V & PEEK cellular structures produced by Selective Laser Melting and Hot Pressing: A tribo-corrosion study targeting orthopaedic applications," Journal of the Mechanical Behavior of Biomedical Materials, 89 (2019) 54–64, Jan. 2019.
DOI: 10.1016/j.jmbbm.2018.09.009
Google Scholar
[4]
G. M. Uddin et al., "Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing," International Journal of Advanced Manufacturing Technology,( 2019) 102, 5–8, 1391–1404.
DOI: 10.1007/s00170-018-03244-2
Google Scholar
[5]
V. Sáenz de Viteri et al., "Development of Ti-C-N coatings with improved tribological behaviour and antibacterial properties," Journal of Mechanical Behaviour of Biomedical materials 55 (2015) 75-86.
Google Scholar
[6]
R. Bayón, A. Igartua, J. J. González, and U. Ruiz De Gopegui, "Influence of the carbon content on the corrosion and tribo-corrosion performance of Ti-DLC coatings for biomedical alloys," Tribology International, 88(2015) 115–125.
DOI: 10.1016/j.triboint.2015.03.007
Google Scholar
[7]
M. Niinomi, "Mechanical properties of biomedical titanium alloys," Materials Science and Engineering A243 (1998) 231–236.
Google Scholar
[8]
V. V. Popov et al., "Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases," Biomedical Engineering Letters, no. 4. Springer Verlag, 8 (2018) 337–344.
DOI: 10.1007/s13534-018-0080-5
Google Scholar
[9]
D. Baykal, R. S. Siskey, H. Haider, V. Saikko, T. Ahlroos, and S. M. Kurtz, "Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers," Journal of the Mechanical Behaviour of Biomedical Materials, 31(2014) 117–134.
DOI: 10.1016/j.jmbbm.2013.05.020
Google Scholar
[10]
M. Molaei, M. Nouri, K. Babaei, and A. Fattah-Alhosseini, "Improving surface features of PEO coatings on titanium and titanium alloys with zirconia particles: A review," Surfaces and Interfaces Elsevier B.V. 22(2021) 100888.
DOI: 10.1016/j.surfin.2020.100888
Google Scholar
[11]
A. T. Sidambe, "Biocompatibility of advanced manufactured titanium implants-A review," Materials 7(2014) 8168-8188.
DOI: 10.3390/ma7128168
Google Scholar
[12]
S. Wang, Z. Liao, Y. Liu, and W. Liu, "The Tribological Behaviours of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition," Journal of Materials Engineering and Performance 24(2015) 4462–4474.
DOI: 10.1007/s11665-015-1732-6
Google Scholar
[13]
M. Fellah, M. Labaïz, O. Assala, and A. Iost, "Comparative Tribological study of biomaterials AISI 316L and Ti6Al7Nb," 40th Leeds-Lyon Symposium on Tribology & Tribochemistry Forum 2013.
DOI: 10.1179/1751584x13y.0000000032
Google Scholar
[14]
T. Polcar, T. Vitu, L. Cvrcek, R. Novak, J. Vyskocil, and A. Cavaleiro, "Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications," Solid State Sciences 11 (2009) 1757–1761.
DOI: 10.1016/j.solidstatesciences.2008.10.006
Google Scholar
[15]
M. P. Gispert et al., "Tribological behaviour of Cl-implanted TiN coatings for biomedical applications,"Wear 262(2007)1337–1345.
DOI: 10.1016/j.wear.2007.01.017
Google Scholar
[16]
S. Carvalhoa, L. Reboutaa, A. Cavaleirob et al., "Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings," Thin Solid Films 398 –399 (2001) 391–396.
DOI: 10.1016/s0040-6090(01)01348-7
Google Scholar
[17]
M. FELLAH et al., "Effect of sintering temperature on structure and tribological properties of nanostructured Ti–15Mo alloy for biomedical applications," Transactions of Nonferrous Metals Society of China (English Edition) 29(2019) 2310–2320.
DOI: 10.1016/s1003-6326(19)65137-x
Google Scholar
[18]
C. R. Ramos-Saenz, P. A. Sundaram, and N. Diffoot-Carlo, "Tribological properties of Ti-based alloys in a simulated bone-implant interface with Ringer's solution at fretting contacts," Journal of Mechanical Behaviour of Biomedical materials 3(2010) 549-558.
DOI: 10.1016/j.jmbbm.2010.06.006
Google Scholar
[19]
Z. A. Uwais, M. A. Hussein, M. A. Samad, and N. Al-Aqeeli, "Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review," Arabian Journal for Science and Engineering Springer Verlag,42(2017) 4493–4512.
DOI: 10.1007/s13369-017-2624-x
Google Scholar
[20]
H. Singh, R. Kumar, C. Prakash, and S. Singh, "HA-based coating by plasma spray techniques on titanium alloy for orthopaedic applications," in Materials Today: Proceedings, Elsevier Ltd, 2021 612–628.
DOI: 10.1016/j.matpr.2021.03.165
Google Scholar
[21]
M. Fellah, O. Assala, M. Labaïz, L. Dekhil, and A. Iost, "Friction and Wear Behaviour of Ti-6Al-7Nb Biomaterial Alloy." Journal of Biomaterials and Nanobiotechnology,4 (2013) 374-384.
DOI: 10.4236/jbnb.2013.44047
Google Scholar
[22]
D. Kuczyńska-Zemła et al., "A novel approach to enhance mechanical properties of Ti substrates for biomedical applications," Journal of Alloys Compound. 970(2024) 172455.
DOI: 10.1016/j.jallcom.2023.172455
Google Scholar
[23]
D. Zhu, Li. Xiaoqiang, S. Chai, Tien-Shee Chee, Chaerin Kim, Liang Li, Dexue Liu, Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy, Journal of the Mechanical Behavior of Biomedical Materials, Volume 165, 2025, 106951, ISSN 1751-6161.
DOI: 10.1016/j.jmbbm.2025.106951
Google Scholar
[24]
Xu. Yihan, Li. Yihan, Tianyan Chen, Chuanyao Dong, Kan Zhang, Xingfu Bao, A short review of medical-grade stainless steel: Corrosion resistance and novel techniques, Journal of Materials Research and Technology, Volume 29, 2024, Pages 2788-2798, ISSN 2238-7854.
DOI: 10.1016/j.jmrt.2024.01.240
Google Scholar
[25]
L. D Gutiérrez Púa,., J. C.Rincón Montenegro, , Fonseca Reyes, A.M. et al. Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. J Mater Sci 58, 3879–3908 (2023)
DOI: 10.1007/s10853-023-08237-5
Google Scholar
[26]
C. Zheng, Lin, B., Li, T. et al. Corrosion resistance and biocompatibility of carbon ion implanted AZ31B magnesium alloy. Sci Rep 14, 25356 (2024)
DOI: 10.1038/s41598-024-77543-y
Google Scholar
[27]
Wu H, Jiang T, Kong L, Chen X, Liu P. The Mechanical Properties, Corrosion Resistance, and Biocompatibility of a Novel Ternary Ti-xNb-5Ta Alloy for Biomedical Applications. Materials (Basel). 2025 Jan 28;18(3):602. doi: 10.3390/ma18030602. PMID: 39942268; PMCID: PMC11818253.
DOI: 10.3390/ma18030602
Google Scholar