Low-Cost Furnace-Grown Silicon Nanoparticles on Nanographite: A New Pathway to Produce LIB Anodes

Article Preview

Abstract:

Silicon materials are currently being explored for usage in lithium-ion battery anodes due to their high lithium storage capacity. We have developed a novel method, using a simple thermal treatment of low-cost silicon powder and nanographite, resulting in a composite where silicon nanoparticles are grown on the graphene surfaces. Electrodes fabricated from these Si-NG composites delivered a stable capacity of 489 mAh/g during 25 cycles, i.e. higher than conventional graphite anodes (theoretical capacity: 372 mAh/g). The method uses low-cost materials and avoids complex setups, thereby suggesting industrial scalability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1168)

Pages:

79-84

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Li, Q. Li, J. Chai, Y. Wang, J. Du, Z. Chen, Y. Rui, L. Jiang, B. Tang, Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress, ACS Mater. Lett. 5 (2023) 2948–2970.

DOI: 10.1021/acsmaterialslett.3c00253

Google Scholar

[2] X. Xia, X. Qian, C. Chen, W. Li, D. He, G. He, H. Chen, Recent progress of Si-based anodes in the application of lithium-ion batteries, J. Energy Storage 72 part E (2023), 108715.

DOI: 10.1016/j.est.2023.108715

Google Scholar

[3] P.U. Nzereogu, A.D. Omah, F.I. Ezema, E.I. Iwuoha, A.C. Nwanya, Anode materials for lithium-ion batteries: A review, Appl. Surf. Sci. Adv. 9 (2022) 100233.

DOI: 10.1016/j.apsadv.2022.100233

Google Scholar

[4] V. Antonio, M. Martín, J.G. Segovia-hern, Process design and intensi fi cation for the production of solar grade silicon, 170 (2018).

Google Scholar

[5] C.E. Erickson and G.H. Wagner, U.S. Patent, 2,595,620, 1952.

Google Scholar

[6] W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, P.A. Ramachandran, Solar Energy Materials & Solar Cells Development of fluidized bed reactors for silicon production, 94 (2010) 1980–1995.

DOI: 10.1016/j.solmat.2010.07.027

Google Scholar

[7] I. Doʇan, M.C.M. Van De Sanden, Gas-Phase Plasma Synthesis of Free-Standing Silicon Nanoparticles for Future Energy Applications, Plasma Process. Polym. 13 (2016) 19–53.

DOI: 10.1002/ppap.201500197

Google Scholar

[8] R. Ohta, T. Tanaka, A. Takeuchi, M. Dougakiuchi, K. Fukuda, M. Kambara, Feasibility of silicon nanoparticles produced by fast-rate plasma spray PVD for high density lithium-ion storage, J. Phys. D. Appl. Phys. 54 (2021) 494002.

DOI: 10.1088/1361-6463/ac23ff

Google Scholar

[9] B. Liu, P. Huang, Z. Xie, Q. Huang, Large-Scale Production of a Silicon Nanowire/Graphite Composites Anode via the CVD Method for High-Performance Lithium-Ion Batteries, Energy and Fuels 35 (2021) 2758–2765.

DOI: 10.1021/acs.energyfuels.0c03725

Google Scholar

[10] T. Wang, Z. Wang, H. Li, L. Cheng, Y. Wu, X. Liu, Recent status , key strategies , and challenging prospects for fast charging silicon-based anodes for lithium-ion batteries, Carbon, 230 (2024), 119615.

DOI: 10.1016/j.carbon.2024.119615

Google Scholar

[11] N. Blomquist, A.-C. Engström, M. Hummelgård, B. Andres, S. Forsberg, H. Olin, Large-Scale Production of Nanographite by Tube-Shear Exfoliation in Water, PLoS One 11 (2016) e0154686.

DOI: 10.1371/journal.pone.0154686

Google Scholar

[12] M. Phadatare, R. Patil, N. Blomquist, S. Forsberg, J. Örtegren, M. Hummelgård, J. Meshram, G. Hernández, D. Brandell, K. Leifer, S.K.M. Sathyanath, H. Olin, Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries, Sci. Rep. 9 (2019) 1–9.

DOI: 10.1038/s41598-019-51087-y

Google Scholar