[1]
J.M.P.Q. Delgado, V.P. de Freitas, A.S. Guimarães, Water movement in building walls: interfaces influence on the moisture flux, Heat Mass Transfer, 52 (2016) 2415–2422.
DOI: 10.1007/s00231-016-1755-z
Google Scholar
[2]
H.V. Andersen, M. Morelli, T.K. Hansen, R. Peuhkuri In-situ characterization of the relative humidity at the surface of building materials. Journal of Physics: Conference Series, 2654(1) (2023) 012043.
DOI: 10.1088/1742-6596/2654/1/012043
Google Scholar
[3]
M. Campanale, L. Moro, Thermal Conductivity of Moist Autoclaved Aerated Concrete: Experimental Comparison Between Heat Flow Method (HFM) and Transient Plane Source Technique (TPS). Transp Porous Med, 113 (2016) 345–355.
DOI: 10.1007/s11242-016-0697-8
Google Scholar
[4]
V. Kočí, R. Černý, Comparison of computational methods for estimation of energy balance of building envelopes. AIP Conference Proceedings, 1558 (2013) 964–967.
DOI: 10.1063/1.4825663
Google Scholar
[5]
C. Monné-Bailo, C. Cabello-Matud, C.J. García-Ballano, A. Ruiz-Varona, Evaluation thermal of the building envelope: Rehabilitated building versus non-rehabilitated, Case Studies in Construction Materials, 20, (2024) e02846.
DOI: 10.1016/j.cscm.2023.e02846
Google Scholar
[6]
S. Zhao, F. Kang, J. Li, J. Gong, Advanced registration method of UAV photogrammetry point clouds with BIM for 3D localization in concrete dams, Advanced Engineering Informatics, 64 (2025) 102978.
DOI: 10.1016/j.aei.2024.102978
Google Scholar
[7]
Y. Li, D. Luo, Liquid-Water Transfer Coefficients of Porous Building Materials Under High-Humidity Conditions. Buildings, 14 (12) (2024) 3865.
DOI: 10.3390/buildings14123865
Google Scholar
[8]
D.M. Degefu, Z. Liao, U. Berardi, G. Labbé, I. Akhmetova, Geopolymer concrete for net-zero buildings: Correlating paste chemistry with monolith hygrothermal performance, Resources, Conservation and Recycling, Volume 189 (2023) 106743, https://doi.org/10.1016/j.resconrec.2022.106743.
DOI: 10.1063/1.5043730
Google Scholar
[9]
T. Korecký, M. Keppert, J. Maděra, R. Černý, Water transport parameters of autoclaved aerated concrete: Experimental assessment of different modeling approaches. Journal of Building Physics, 39(2) (2014) 170-188.
DOI: 10.1177/1744259114535727
Google Scholar
[10]
M.K. Widomski, G. Lagód, Z. Suchorab, ... Z. Pavlik, M. Zaleska, Application of the Darcy and Richards equations for modelling of water capillary rise in building materials. Journal of Physics: Conference Series, 1736(1) (2021) 012042.
DOI: 10.1088/1742-6596/1736/1/012042
Google Scholar
[11]
M. Jerman, I. Medveď, J. Maděra, V. Kočí, R. Cerný, Effect of moisture variations on damage cumulation in surface layers of building structures. AIP Conference Proceedings, 1978 (2018) 080005.
DOI: 10.1063/1.5043730
Google Scholar
[12]
T. Koudelka, J. Kruis, S. Sysala, M. Vokáč, Modeling of damage due to shrinkage in autoclaved aerated concrete. AIP Conference Proceedings, 1648 (2015) 090012.
DOI: 10.1063/1.4912400
Google Scholar
[13]
A. Alsabry, B. Backiel-Brzozowska, V. I. Nikitsin, Dependencies for Determining the Thermal Conductivity of Moist Capillary-Porous Materials. Energies, 13(12) (2020) 3211.
DOI: 10.3390/en13123211
Google Scholar
[14]
M. Riabchykov, O. Tkachuk, L. Nazarchuk, A. Alexandrov, Conditions for the open pores formation in medical textile materials for the treatment of wounds using iron oxide nanopowders. Materials Research Express, 10(1) (2023) 015401.
DOI: 10.1088/2053-1591/acadcf
Google Scholar
[15]
J. Kerr, N. Bieberdorf, L. Capolungo, M. Asta, Morphology selection in dealloying: A phase field study of the coupling among kinetic mechanisms. Physical Review Materials, 8(10) (2024) 103802.
DOI: 10.1103/PhysRevMaterials.8.103802
Google Scholar
[16]
D. Jiang, Y. Xu, Chen, C. et al., Preparation and properties of phase change energy storage building materials based on capric acid–octadecanol/fly ash–diatomite. J Mater Sci., 57 (2022) 21432–21445.
DOI: 10.1007/s10853-022-07968-1
Google Scholar
[17]
Y. Si-yang, J. Hong-qing, F. Li-wu, X. Xu, Y. Zi-tao, G. Jian, Transient determination of water vapor diffusion coefficient of porous building materials, Journal of Zhejiang University (Engineering Science), 50 1 (2016) 16-20, ISSN 1008-973X.
Google Scholar
[18]
H. N. Thai, K. Kawamoto, H. G. Nguyen, T. Sakaki, T. Komatsu, P. Moldrup, Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains. Sustainability, 4(4) (2022) 2417.
DOI: 10.3390/su14042417
Google Scholar
[19]
J. Lu, K. Wang, M.-L. Qu, Experimental determination on the capillary water absorption coefficient of porous building materials: A comparison between the intermittent and continuous absorption tests, Journal of Building Engineering, Volume 28 (2020) 101091.
DOI: 10.1016/j.jobe.2019.101091
Google Scholar
[20]
S.-Q. Tian, K. Wang, L.-W. Fan, Z.-T. Yu, J. Ge, Effects of sample length on the transient measurement results of water vapor diffusion coefficient of porous building materials: A case study of autoclave aerated concrete (AAC) with various porosities, International Journal of Heat and Mass Transfer, 135 (2019) 209-219, https://doi.org/10.1016/j.ijheatmasstransfer. 2019.01.124.
DOI: 10.1016/j.ijheatmasstransfer.2019.01.124
Google Scholar
[21]
C.S. Mahato, S. Biswas, Rayleigh waves in thermoelastic medium based on a novel nonlocal three-phase-lag diffusion model with double porosity, International Journal of Numerical Methods for Heat & Fluid Flow, 35 1 (2025) 3-46.
DOI: 10.1108/HFF-06-2024-0469
Google Scholar
[22]
D. Majerek, E. Sędzielewska, M. Paśnikowska-Łukaszuk, E. Łazuka, Z. Suchorab, G. Łagód, Automatic Image Analysis Method as a Tool to Evaluate the Anisotropy of Autoclaved Aerated Concrete for Moisture and Heat Transport. Materials, 17(19) (2024) 4903.
DOI: 10.3390/ma17194903
Google Scholar
[23]
M. Riabchykov, V. Vlasenko, S. Arabuli, Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a Textil. 18 (2) (2011) 24-30.
Google Scholar
[24]
M. Riabchykov, L. Nazarchuk, O. Tkachuk, Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds. Tekstilec. 65(4) (2022) 268-277.
DOI: 10.14502/tekstilec.65.2022064
Google Scholar
[25]
C. Feng, H. Janssen, Hygric properties of porous building materials (VII): Full-range benchmark characterizations of three materials, Building and Environment, Volume 195 (2021) 107727.
DOI: 10.1016/j.buildenv.2021.107727
Google Scholar