Non-Stationary Nonlinear Problem of Moisture Transport in Porous Building Materials

Article Preview

Abstract:

The article investigates the process of liquid penetration into porous building materials, including concrete, brick, drywall, plaster, aerated concrete, and others. The influence of moisture on the durability, thermal insulation properties, and structural integrity of materials is examined. The relevance of developing mathematical models for predicting moisture ingress in constructions is highlighted, as this enables the minimization of operational costs and enhancement of building energy efficiency. A nonlinear diffusion model is proposed, taking into account the dependence of the diffusion coefficient on moisture concentration. Experimental data were approximated, and model parameters for specific materials were determined. Both stationary and nonstationary moisture transport problems are considered, with analytical solutions and a methodology for their application in predicting the depth of moisture penetration presented. The results can be integrated into BIM systems, opening new perspectives for use in digital construction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1169)

Pages:

117-125

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.M.P.Q. Delgado, V.P. de Freitas, A.S. Guimarães, Water movement in building walls: interfaces influence on the moisture flux, Heat Mass Transfer, 52 (2016) 2415–2422.

DOI: 10.1007/s00231-016-1755-z

Google Scholar

[2] H.V. Andersen, M. Morelli, T.K. Hansen, R. Peuhkuri In-situ characterization of the relative humidity at the surface of building materials. Journal of Physics: Conference Series, 2654(1) (2023) 012043.

DOI: 10.1088/1742-6596/2654/1/012043

Google Scholar

[3] M. Campanale, L. Moro, Thermal Conductivity of Moist Autoclaved Aerated Concrete: Experimental Comparison Between Heat Flow Method (HFM) and Transient Plane Source Technique (TPS). Transp Porous Med, 113 (2016) 345–355.

DOI: 10.1007/s11242-016-0697-8

Google Scholar

[4] V. Kočí, R. Černý, Comparison of computational methods for estimation of energy balance of building envelopes. AIP Conference Proceedings, 1558 (2013) 964–967.

DOI: 10.1063/1.4825663

Google Scholar

[5] C. Monné-Bailo, C. Cabello-Matud, C.J. García-Ballano, A. Ruiz-Varona, Evaluation thermal of the building envelope: Rehabilitated building versus non-rehabilitated, Case Studies in Construction Materials, 20, (2024) e02846.

DOI: 10.1016/j.cscm.2023.e02846

Google Scholar

[6] S. Zhao, F. Kang, J. Li, J. Gong, Advanced registration method of UAV photogrammetry point clouds with BIM for 3D localization in concrete dams, Advanced Engineering Informatics, 64 (2025) 102978.

DOI: 10.1016/j.aei.2024.102978

Google Scholar

[7] Y. Li, D. Luo, Liquid-Water Transfer Coefficients of Porous Building Materials Under High-Humidity Conditions. Buildings, 14 (12) (2024) 3865.

DOI: 10.3390/buildings14123865

Google Scholar

[8] D.M. Degefu, Z. Liao, U. Berardi, G. Labbé, I. Akhmetova, Geopolymer concrete for net-zero buildings: Correlating paste chemistry with monolith hygrothermal performance, Resources, Conservation and Recycling, Volume 189 (2023) 106743, https://doi.org/10.1016/j.resconrec.2022.106743.

DOI: 10.1063/1.5043730

Google Scholar

[9] T. Korecký, M. Keppert, J. Maděra, R. Černý, Water transport parameters of autoclaved aerated concrete: Experimental assessment of different modeling approaches. Journal of Building Physics, 39(2) (2014) 170-188.

DOI: 10.1177/1744259114535727

Google Scholar

[10] M.K. Widomski, G. Lagód, Z. Suchorab, ... Z. Pavlik, M. Zaleska, Application of the Darcy and Richards equations for modelling of water capillary rise in building materials. Journal of Physics: Conference Series, 1736(1) (2021) 012042.

DOI: 10.1088/1742-6596/1736/1/012042

Google Scholar

[11] M. Jerman, I. Medveď, J. Maděra, V. Kočí, R. Cerný, Effect of moisture variations on damage cumulation in surface layers of building structures. AIP Conference Proceedings, 1978 (2018) 080005.

DOI: 10.1063/1.5043730

Google Scholar

[12] T. Koudelka, J. Kruis, S. Sysala, M. Vokáč, Modeling of damage due to shrinkage in autoclaved aerated concrete. AIP Conference Proceedings, 1648 (2015) 090012.

DOI: 10.1063/1.4912400

Google Scholar

[13] A. Alsabry, B. Backiel-Brzozowska, V. I. Nikitsin, Dependencies for Determining the Thermal Conductivity of Moist Capillary-Porous Materials. Energies, 13(12) (2020) 3211.

DOI: 10.3390/en13123211

Google Scholar

[14] M. Riabchykov, O. Tkachuk, L. Nazarchuk, A. Alexandrov, Conditions for the open pores formation in medical textile materials for the treatment of wounds using iron oxide nanopowders. Materials Research Express, 10(1) (2023) 015401.

DOI: 10.1088/2053-1591/acadcf

Google Scholar

[15] J. Kerr, N. Bieberdorf, L. Capolungo, M. Asta, Morphology selection in dealloying: A phase field study of the coupling among kinetic mechanisms. Physical Review Materials, 8(10) (2024) 103802.

DOI: 10.1103/PhysRevMaterials.8.103802

Google Scholar

[16] D. Jiang, Y. Xu, Chen, C. et al., Preparation and properties of phase change energy storage building materials based on capric acid–octadecanol/fly ash–diatomite. J Mater Sci., 57 (2022) 21432–21445.

DOI: 10.1007/s10853-022-07968-1

Google Scholar

[17] Y. Si-yang, J. Hong-qing, F. Li-wu, X. Xu, Y. Zi-tao, G. Jian, Transient determination of water vapor diffusion coefficient of porous building materials, Journal of Zhejiang University (Engineering Science), 50 1 (2016) 16-20, ISSN 1008-973X.

Google Scholar

[18] H. N. Thai, K. Kawamoto, H. G. Nguyen, T. Sakaki, T. Komatsu, P. Moldrup, Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains. Sustainability, 4(4) (2022) 2417.

DOI: 10.3390/su14042417

Google Scholar

[19] J. Lu, K. Wang, M.-L. Qu, Experimental determination on the capillary water absorption coefficient of porous building materials: A comparison between the intermittent and continuous absorption tests, Journal of Building Engineering, Volume 28 (2020) 101091.

DOI: 10.1016/j.jobe.2019.101091

Google Scholar

[20] S.-Q. Tian, K. Wang, L.-W. Fan, Z.-T. Yu, J. Ge, Effects of sample length on the transient measurement results of water vapor diffusion coefficient of porous building materials: A case study of autoclave aerated concrete (AAC) with various porosities, International Journal of Heat and Mass Transfer, 135 (2019) 209-219, https://doi.org/10.1016/j.ijheatmasstransfer. 2019.01.124.

DOI: 10.1016/j.ijheatmasstransfer.2019.01.124

Google Scholar

[21] C.S. Mahato, S. Biswas, Rayleigh waves in thermoelastic medium based on a novel nonlocal three-phase-lag diffusion model with double porosity, International Journal of Numerical Methods for Heat & Fluid Flow, 35 1 (2025) 3-46.

DOI: 10.1108/HFF-06-2024-0469

Google Scholar

[22] D. Majerek, E. Sędzielewska, M. Paśnikowska-Łukaszuk, E. Łazuka, Z. Suchorab, G. Łagód, Automatic Image Analysis Method as a Tool to Evaluate the Anisotropy of Autoclaved Aerated Concrete for Moisture and Heat Transport. Materials, 17(19) (2024) 4903.

DOI: 10.3390/ma17194903

Google Scholar

[23] M. Riabchykov, V. Vlasenko, S. Arabuli, Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a Textil. 18 (2) (2011) 24-30.

Google Scholar

[24] M. Riabchykov, L. Nazarchuk, O. Tkachuk, Basic Parameters of Medical Textile Materials for Removal and Retention of Exudate from Wounds. Tekstilec. 65(4) (2022) 268-277.

DOI: 10.14502/tekstilec.65.2022064

Google Scholar

[25] C. Feng, H. Janssen, Hygric properties of porous building materials (VII): Full-range benchmark characterizations of three materials, Building and Environment, Volume 195 (2021) 107727.

DOI: 10.1016/j.buildenv.2021.107727

Google Scholar