H-Adsorption by Alkali Metal Ions (Li, Na, K) Doped on SiO-SnO towards Battery Technologies and Clean Energy: A DFT Study

Article Preview

Abstract:

As lithium-ion batteries have their difficulties, the demand to improve beyond-lithium batteries goes beyond the issues of sustainability and safety. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, sodium and potassium have been evaluated as the promising alternative alkali metals in the ion batteries. A comprehensive investigation on hydrogen grabbing by Li2 [SiO–SnO], Na2 [SiO–SnO] or K2 [SiO–SnO] was carried out using density functional theory (DFT) computations at the Coulomb-attenuating method–Becke, 3-parameter, Lee-Yang-Parr with Dispersion–corrected (CAM–B3LYP–D3/6–311+G (d,p)) level of theory. The hypothesis of the hydrogen adsorption phenomenon was confirmed by density distributions of charge density differences (CDD), total density of states (TDOS), overlap Population density of state (OPDOS) and localized orbital locator (LOL) for nanocluster of Li2 [SiO–SnO]–2H2, Na2 [SiO–SnO]–2H2 or K2 [SiO–SnO]–2H2. The fluctuation in charge density values demonstrates that the electronic densities were mainly located in the boundary of adsorbate/adsorbent atoms during the adsorption process. As the advantage of lithium, sodium or potassium over Si/ Sn receives its higher electron and hole motion, allowing lithium, sodium or potassium instrument to operate at higher frequencies than Si/ Sn instruments. Among these, sodium-ion batteries seem to show the most promise in terms of initial capacity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1169)

Pages:

15-28

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Kayumov, A.P. Radaeva, A. A. Krupina, et al., Lithium-Conducting Nafion Membrane Plasticized with a DMSO–Sulfolane Mixture. Russ. J. Phys. Chem. B 17, 801–809 (2023). doi.org/

DOI: 10.1134/S1990793123040097

Google Scholar

[2] Monajjemi, M., Mollaamin, F. Synthesis and Structural Characterization of a Novel Ternary Composite Containing xLiFeO2, yLi3V2(PO4)3, AND (1 – x – y)LiCoO2 Composites for Lithium-Ion Batteries (LIBs). J Struct Chem 66, 877–888 (2025)

DOI: 10.1134/S0022476625050014

Google Scholar

[3] Mollaamin, F., Monajjemi, M. Comparison between Sodium or Potassium-Ion Batteries and Lithium-Ion Counterparts for Energy-Saving: A Physico-Chemical Study by Density Functional Theory. Russ. J. Phys. Chem. B 19, 688–700 (2025)

DOI: 10.1134/S1990793125700319

Google Scholar

[4] Weisheng Zhang, Weiwei Huang, Qichun Zhang, Organic Materials as Electrodes in Potassium-Ion Batteries. 27(20), 2021, 6131-6144

DOI: 10.1002/chem.202005259

Google Scholar

[5] Mollaamin, F.; Monajjemi, M. An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study. Nanomaterials 2025, 15, 959

DOI: 10.3390/nano15130959

Google Scholar

[6] Weihan Li, Xueliang Sun, Yan Yu, Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance. 1(3), 2017, 1600037

DOI: 10.1002/smtd.201600037

Google Scholar

[7] Mollaamin, F. Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage. BMC Chemistry 19, 233 (2025)

DOI: 10.1186/s13065-025-01593-0

Google Scholar

[8] Uchida, G., Masumoto, K., Sakakibara, M. et al. Single-step fabrication of fibrous Si/Sn composite nanowire anodes by high-pressure He plasma sputtering for high-capacity Li-ion batteries. Sci Rep 13, 14280 (2023)

DOI: 10.1038/s41598-023-41452-3

Google Scholar

[9] Zhang, L., Yue, Q. & Yang, H. Kinetic Study on Volatilization of the SnO–SiO2 and SnO–SiO2–CaO Systems. J. Sustain. Metall. 8, 754–767 (2022)

DOI: 10.1007/s40831-022-00522-y

Google Scholar

[10] Kumari, K., Moyon, N.S. & Ahmaruzzaman, M. Environmentally sustainable fabrication of SnO2/fly ash/biochar nanocomposite for enhanced photocatalytic performance for degradation of Ofloxacin and Rose Bengal. Sci Rep 15, 11965 (2025)

DOI: 10.1038/s41598-025-96480-y

Google Scholar

[11] I. Sandler, J. Chen, M. Taylor, et al., Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. J. Phys. Chem. A 125, 1553–1563 (2021). doi.org/

DOI: 10.1021/acs.jpca.0c11270

Google Scholar

[12] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters. 393, 51–57 (2004). doi.org/

DOI: 10.1016/j.cplett.2004.06.011

Google Scholar

[13] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 36, 354–360 (2006). doi.org/

DOI: 10.1016/j.commatsci.2005.04.010

Google Scholar

[14] P. Geerlings, From Density Functional Theory to Conceptual Density Functional Theory and Biosystems. Pharmaceuticals. 15, 1112 (2022). doi.org/

DOI: 10.3390/ph15091112

Google Scholar

[15] P. Powroźnik, M. Krzywiecki, Intertwining Density Functional Theory and Experiments in the Investigation of Gas Sensing Mechanisms: A Review. Sensors. 25, 867 (2025). doi.org/

DOI: 10.3390/s25030867

Google Scholar

[16] Q. He, B. Yu, Z. Li, et al., Density Functional Theory for Battery Materials. 2, 264–279 (2019). doi.org/

DOI: 10.1002/eem2.12056

Google Scholar

[17] L. Mao, Y. Zou, R. Yang, et al., Advances in the density functional theory (DFT) calculation of lithium-sulfur battery cathodes. 36, 106814 (2023). doi.org/

DOI: 10.1016/j.mtcomm.2023.106814

Google Scholar

[18] D.G. Ladha, A review on density functional theory–based study on two-dimensional materials used in batteries. 11, 94–111 (2019). doi.org/

DOI: 10.1016/j.mtchem.2018.10.006

Google Scholar

[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

Google Scholar

[20] R. Dennington, T. A. Keith, J. M. Millam, GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS, 2016.

Google Scholar

[21] H.L Schmider, A.D Becke, Chemical content of the kinetic energy density. Journal of Molecular Structure: THEOCHEM. 527(1–3), 51–61 (2000). doi.org/

DOI: 10.1016/S0166-1280(00)00477-2

Google Scholar

[22] Tian Lu, Feiwu Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). doi.org/

DOI: 10.1002/jcc.22885

Google Scholar

[23] Tian Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024). doi.org/

DOI: 10.1063/5.0216272

Google Scholar

[24] 24.V. Tsirelson and A. Stash, Analyzing experimental electron density with the localized-orbital locator. Acta Cryst. B. 58, 780–785 (2002). doi.org/

DOI: 10.1107/S0108768102012338

Google Scholar

[25] I. Mayer, Improved definition of bond orders for correlated wave functions. Chemical Physics Letters 544, 83–86 (2012). doi.org/

DOI: 10.1016/j.cplett.2012.07.003

Google Scholar

[26] Ohlinger, William S.; Philip E. Klunzinger; Bernard J. Deppmeier; Warren J. Hehre, Efficient Calculation of Heats of Formation. The Journal of Physical Chemistry A. 113 (10). 2165–2175 (2009).

DOI: 10.1021/jp810144q

Google Scholar

[27] T. Lu & F. Chen, Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space. J. Phys. Chem. A 117, 3100–3108 (2013). doi.org/

DOI: 10.1021/jp4010345

Google Scholar

[28] X. Wang, X. Zhang, W. Pedrycz, et al., Consensus of T-S Fuzzy Fractional-Order, Singular Perturbation, Multi-Agent Systems. Fractal Fract.  8, 523 (2024). doi.org/

DOI: 10.3390/fractalfract8090523

Google Scholar