[1]
R.R. Kayumov, A.P. Radaeva, A. A. Krupina, et al., Lithium-Conducting Nafion Membrane Plasticized with a DMSO–Sulfolane Mixture. Russ. J. Phys. Chem. B 17, 801–809 (2023). doi.org/
DOI: 10.1134/S1990793123040097
Google Scholar
[2]
Monajjemi, M., Mollaamin, F. Synthesis and Structural Characterization of a Novel Ternary Composite Containing xLiFeO2, yLi3V2(PO4)3, AND (1 – x – y)LiCoO2 Composites for Lithium-Ion Batteries (LIBs). J Struct Chem 66, 877–888 (2025)
DOI: 10.1134/S0022476625050014
Google Scholar
[3]
Mollaamin, F., Monajjemi, M. Comparison between Sodium or Potassium-Ion Batteries and Lithium-Ion Counterparts for Energy-Saving: A Physico-Chemical Study by Density Functional Theory. Russ. J. Phys. Chem. B 19, 688–700 (2025)
DOI: 10.1134/S1990793125700319
Google Scholar
[4]
Weisheng Zhang, Weiwei Huang, Qichun Zhang, Organic Materials as Electrodes in Potassium-Ion Batteries. 27(20), 2021, 6131-6144
DOI: 10.1002/chem.202005259
Google Scholar
[5]
Mollaamin, F.; Monajjemi, M. An Architectural Battery Designed by Substituting Lithium with Second Main Group Metals (Be, Mg, Ca/Cathode) and Hybrid Oxide of Fourth Group Ones (Si, Ge, Sn/Anode) Nanomaterials Towards H2 Adsorption: A Computational Study. Nanomaterials 2025, 15, 959
DOI: 10.3390/nano15130959
Google Scholar
[6]
Weihan Li, Xueliang Sun, Yan Yu, Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance. 1(3), 2017, 1600037
DOI: 10.1002/smtd.201600037
Google Scholar
[7]
Mollaamin, F. Anchoring of 2D layered materials of Ge5Si5O20 for (Li/Na/K)-(Rb/Cs) batteries towards Eco-friendly energy storage. BMC Chemistry 19, 233 (2025)
DOI: 10.1186/s13065-025-01593-0
Google Scholar
[8]
Uchida, G., Masumoto, K., Sakakibara, M. et al. Single-step fabrication of fibrous Si/Sn composite nanowire anodes by high-pressure He plasma sputtering for high-capacity Li-ion batteries. Sci Rep 13, 14280 (2023)
DOI: 10.1038/s41598-023-41452-3
Google Scholar
[9]
Zhang, L., Yue, Q. & Yang, H. Kinetic Study on Volatilization of the SnO–SiO2 and SnO–SiO2–CaO Systems. J. Sustain. Metall. 8, 754–767 (2022)
DOI: 10.1007/s40831-022-00522-y
Google Scholar
[10]
Kumari, K., Moyon, N.S. & Ahmaruzzaman, M. Environmentally sustainable fabrication of SnO2/fly ash/biochar nanocomposite for enhanced photocatalytic performance for degradation of Ofloxacin and Rose Bengal. Sci Rep 15, 11965 (2025)
DOI: 10.1038/s41598-025-96480-y
Google Scholar
[11]
I. Sandler, J. Chen, M. Taylor, et al., Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. J. Phys. Chem. A 125, 1553–1563 (2021). doi.org/
DOI: 10.1021/acs.jpca.0c11270
Google Scholar
[12]
T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters. 393, 51–57 (2004). doi.org/
DOI: 10.1016/j.cplett.2004.06.011
Google Scholar
[13]
G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 36, 354–360 (2006). doi.org/
DOI: 10.1016/j.commatsci.2005.04.010
Google Scholar
[14]
P. Geerlings, From Density Functional Theory to Conceptual Density Functional Theory and Biosystems. Pharmaceuticals. 15, 1112 (2022). doi.org/
DOI: 10.3390/ph15091112
Google Scholar
[15]
P. Powroźnik, M. Krzywiecki, Intertwining Density Functional Theory and Experiments in the Investigation of Gas Sensing Mechanisms: A Review. Sensors. 25, 867 (2025). doi.org/
DOI: 10.3390/s25030867
Google Scholar
[16]
Q. He, B. Yu, Z. Li, et al., Density Functional Theory for Battery Materials. 2, 264–279 (2019). doi.org/
DOI: 10.1002/eem2.12056
Google Scholar
[17]
L. Mao, Y. Zou, R. Yang, et al., Advances in the density functional theory (DFT) calculation of lithium-sulfur battery cathodes. 36, 106814 (2023). doi.org/
DOI: 10.1016/j.mtcomm.2023.106814
Google Scholar
[18]
D.G. Ladha, A review on density functional theory–based study on two-dimensional materials used in batteries. 11, 94–111 (2019). doi.org/
DOI: 10.1016/j.mtchem.2018.10.006
Google Scholar
[19]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
Google Scholar
[20]
R. Dennington, T. A. Keith, J. M. Millam, GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS, 2016.
Google Scholar
[21]
H.L Schmider, A.D Becke, Chemical content of the kinetic energy density. Journal of Molecular Structure: THEOCHEM. 527(1–3), 51–61 (2000). doi.org/
DOI: 10.1016/S0166-1280(00)00477-2
Google Scholar
[22]
Tian Lu, Feiwu Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). doi.org/
DOI: 10.1002/jcc.22885
Google Scholar
[23]
Tian Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024). doi.org/
DOI: 10.1063/5.0216272
Google Scholar
[24]
24.V. Tsirelson and A. Stash, Analyzing experimental electron density with the localized-orbital locator. Acta Cryst. B. 58, 780–785 (2002). doi.org/
DOI: 10.1107/S0108768102012338
Google Scholar
[25]
I. Mayer, Improved definition of bond orders for correlated wave functions. Chemical Physics Letters 544, 83–86 (2012). doi.org/
DOI: 10.1016/j.cplett.2012.07.003
Google Scholar
[26]
Ohlinger, William S.; Philip E. Klunzinger; Bernard J. Deppmeier; Warren J. Hehre, Efficient Calculation of Heats of Formation. The Journal of Physical Chemistry A. 113 (10). 2165–2175 (2009).
DOI: 10.1021/jp810144q
Google Scholar
[27]
T. Lu & F. Chen, Bond Order Analysis Based on the Laplacian of Electron Density in Fuzzy Overlap Space. J. Phys. Chem. A 117, 3100–3108 (2013). doi.org/
DOI: 10.1021/jp4010345
Google Scholar
[28]
X. Wang, X. Zhang, W. Pedrycz, et al., Consensus of T-S Fuzzy Fractional-Order, Singular Perturbation, Multi-Agent Systems. Fractal Fract. 8, 523 (2024). doi.org/
DOI: 10.3390/fractalfract8090523
Google Scholar