Nano-Titanium Dioxide Coatings for Enhanced Performance of Pantograph Support Insulators in Electric Railway Systems

Article Preview

Abstract:

Pantograph support insulators are critical for maintaining reliable power transmission in electric railway systems. However, conventional porcelain insulators suffer from contamination buildup, leading to leakage currents and flashover risks. This study investigates nanotitanium dioxide (TiO₂) coatings to enhance porcelain insulator performance. X-ray diffraction (XRD) analysis confirmed the transformation of P25 TiO₂ into the rutile phase at 1240°C, improving durability and electrical properties. Energy-dispersive X-ray spectroscopy (EDX) verified uniform TiO₂ distribution, while field emission scanning electron microscopy (FE-SEM) revealed a smooth glaze layer. Electrical testing demonstrated a 52.11% reduction in leakage current for nanoTiO₂-coated insulators under 11 kV conditions, attributed to enhanced hydrophobicity and photocatalytic self-cleaning. These results highlight the feasibility of integrating nanoTiO₂ coatings into insulator manufacturing for reduced maintenance and improved reliability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1169)

Pages:

9-14

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. M. Alam, L. Xuemei, S. Baig and A. A. Shah: Networks and Spatial Economics Vol. 20 (2020), p.989–1014.

Google Scholar

[2] J. Sun, G. Gao, G. Wu, X. Cao and G. Zhu: IEEE Trans. Dielectr. Electr. Insul. Vol. 21, No. 4 (2014), p.1637–1646.

Google Scholar

[3] B. Subba Reddy and P. C. Ramamurthy: Eng. Fail. Anal. Vol. 108 (2020), p.104227.

Google Scholar

[4] A. Bagaskara, Rachmawati and Suwarno: Int. J. Electr. Eng. Inform. Vol. 16 (2024), p.363–379.

Google Scholar

[5] J. Zhuang, P. Liu, W. Dai and X. Fu: Int. J. Appl. Ceram. Technol. Vol. 7, No. S1 (2010), p. E46–E53.

Google Scholar

[6] S. Zeb, I. Ullah, A. Karim, W. Muhammad, N. Ullah, M. Khan and W. Komal: Nanoscale Reports Vol. 2 (2019), p.32–38.

DOI: 10.26524/nr1924

Google Scholar

[7] N. S. Mehta, S. Dey, V. Singh and M. R. Majhi: Appl. Surf. Sci. Adv. Vol. 4 (2021), p.100083.

Google Scholar

[8] M. Esmaili, M. R. Nilforoushan, M. Tayebi and E. Aghaie: Ceram. Int. Vol. 47 (2021), p.17435–17444.

DOI: 10.1016/j.ceramint.2021.03.060

Google Scholar

[9] K. Belhouchet, A. Zemmit, H. Belhouchet, A. Bayadi and M. Romero: J. Mater. Sci.: Mater. Electron. Vol. 35 (2024), p.1971.

DOI: 10.1007/s10854-024-13756-1

Google Scholar

[10] M. Amin, S. Amin and M. Ali: Rev. Adv. Mater. Sci. Vol. 21 (2009), p.75–89.

Google Scholar

[11] J. Y. Li, C. X. Sun and S. A. Sebo: IET Gener. Transm. Distrib. Vol. 5, No. 1 (2011), p.19–28.

Google Scholar

[12] H. Fadaei, F. Faghihi and H. Mohmmadnezhad: Signal Process. Renew. Energy, (2021), p.51–78.

Google Scholar

[13] A. A. Salem, K. Y. Lau, W. Rahiman, Z. Abdul-Malek, S. A. Al-Gailani, R. Abd Rahman and S. Al-Ameri: Sci. Rep. Vol. 12 (2022), p.14974.

DOI: 10.1038/s41598-022-17792-x

Google Scholar