White-Beam X-Ray Sectional Topography of Anthracene Single Crystals Grown by Physical Vapor Transport Technique

Article Preview

Abstract:

White-beam X-ray sectional topography enabled the successful evaluation of the quality of anthracene single crystals grown by the physical vapor transport technique; however, such single crystals exhibited a thin plateletlike configuration and their quality is difficult to evaluate in the cross-sectional direction. The experimental results showed that the anthracene single crystals grown by the physical vapor transport technique maintained their high quality; however, they tended to have widespread hollows inside owing to their specific configuration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1169)

Pages:

3-8

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Paoloni and A. Ruocco: Surf. Sci. Vol. 735 (2023), p.122322.

Google Scholar

[2] M. D. J. Sanchez, N. S. Abad, N. Nicoara, and J. M. G. Rodriguez: Surf. Sci. Vol. 710 (2021), p.121848.

Google Scholar

[3] J. Knudsen, J. N. Andersen, and J. Schnadt: Surf. Sci. Vol. 646 (2016), p.160.

Google Scholar

[4] K. Gotz, I. Stollberg, A. Prihoda, F. Bertram, E. Metwalli, and T. Unruh: Surf. Sci. Vol. 721 (2022), p.122066.

Google Scholar

[5] Z. Janicijevic, T.-A. Nguyen, and L. Baraban: Next. Nanotech. Vol. 3-4 (2023), p.100025.

Google Scholar

[6] S. Renkert, S. Fall, S. Motamen, Th. Jarrosson, F. S. Spirau, Th. Heiser, L. Simon, G. Reiter, and J. L. Bubendorff: Appl. Surf. Sci. Vol. 539 (2021), p.148024.

DOI: 10.1016/j.apsusc.2020.148024

Google Scholar

[7] S. Park, Y. Jang, E. Choi, D. Ho, W. Chae, T. Earmme, C. Kim, and S. Seo: Thin Solid Films Vol. 745 (2022), p.139112.

DOI: 10.1016/j.tsf.2022.139112

Google Scholar

[8] A. Tanskanen, P. Sundberg, M. Nolan, and M. Karppinen: Thin Solid Films Vol. 736 (2021), p.138896.

DOI: 10.1016/j.tsf.2021.138896

Google Scholar

[9] S. Jana, N. Kumari, S. S. Pandey, and R. Prakash: Appl. Surf. Sci. Vol. 616 (2023), p.156377.

Google Scholar

[10] Y. Park, J. Park, S. Cho, and M. M. Sung: Appl. Surf. Sci. Vol. 494 (2019) p.1023.

Google Scholar

[11] S. Biswasi, D. Gogoi, and A. R. Pal: Appl. Surf. Sci. Vol. 599 (2022), p.153883.

Google Scholar

[12] M. L. Addonizio, A. Aronne, and C. Imparato: Appl. Surf. Sci. Vol. 502 (2020), p.144095.

Google Scholar

[13] N. Karl: J. Cryst. Growth Vol. 99 (1990), p.449.

Google Scholar

[14] Ch. Kloc, P. G. Simpkins, T. Siegrist, and R. A Laudise: J. Cryst. Growth Vol. 182 (1997), p.416.

Google Scholar

[15] R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist: J. Cryst. Growth Vol. 187 (1998), p.449.

Google Scholar

[16] S. Jo, K. Okamoto, and M. Takenaga: Appl. Surf. Sci. Vol. 256 (2010), p.1969.

Google Scholar

[17] S. Jo, N. Takada, and M. Takenaga: J. Phys. Soc. Jpn. Vol. 82 (2013), p.135001.

Google Scholar

[18] S. Jo, S. Suzuki, and M. Yoshimura: Thin Solid Films Vol. 554 (2014), p.154.

Google Scholar

[19] S. Jo, H.Yoshikawa, A. Fujii, and M. Takenaga: Synth. Met. Vol. 150 (2005), p.223.

Google Scholar

[20] S. Jo, H. Yoshikawa, A. Fujii, and M. Takenaga: Appl. Surf. Sci. Vol. 252 (2006), p.3514.

Google Scholar

[21] T. Mukaide, K. Kajiwara, T. Noma, and K. Takada: J. Synchrotron Radiat. Vol. 13 (2006), p.484.

Google Scholar

[22] K. Kajiwara, S. Kawado, S. Iida, Y. Suzuki, and Y. Chikaura: Physica Status Solidi (A) Vol. 204 (2007), p.2682.

DOI: 10.1002/pssa.200675677

Google Scholar

[23] S. Kawado, T. Taishi, S. Iida, Y. Suzuki, Y. Chikaura, and K. Kajiwara: J. Phys. D: Appl. Phys. Vol. 38 (2005), p. A17.

DOI: 10.1088/0022-3727/38/10a/004

Google Scholar

[24] J. E. Northrup, M. L. Tiago, and S. G. Louie: Phys. Rev. B Vol. 66 (2002), p.1214.

Google Scholar