[1]
Pitchayyapillai, G., Seenikannan, P., Raja, K., & Chandrasekaran, K. (2016). Al6061 Hybrid Metal Matrix Composite Reinforced with Alumina and Molybdenum Disulphide. Advances in Materials Science and Engineering, 2016, 1–9.
DOI: 10.1155/2016/6127624
Google Scholar
[2]
Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. Sadhana, 28(1–2), 319–334.
DOI: 10.1007/bf02717141
Google Scholar
[3]
Gireesh, C. H., Prasad, K. D., & Ramji, K. (2018). Experimental investigation on mechanical properties of an AL6061 hybrid metal matrix composite. Journal of Composites Science, 2(3),49.
DOI: 10.3390/jcs2030049
Google Scholar
[4]
Boppana, S. B., Dayanand, S., Murthy, B. V., Nagaral, M., Telagu, A., Kumar, V., & Auradi, V. (2021). Development and mechanical characterisation of AL6061-AL2O3-Graphene Hybrid Metal Matrix composites. Journal of Composites Science, 5(6), 155.
DOI: 10.3390/jcs5060155
Google Scholar
[5]
Butola, R., Singari, R. M., Bandhu, A., Walia, R. S., & Delhi Technological University. (2017). Characteristics and properties of different reinforcements in hybrid aluminium composites: a review. In International Journal of Advanced Production and Industrial Engineering: Vol. IJAPIE-SI-MM 511 (p.71–80) [Journal-article].
Google Scholar
[6]
Kumar, G. B. V., Pramod, R., Reddy, R. H. K., Ramu, P., Kumar, B. K., Madhukar, P., Chavali, M., Mohammad, F., & Khiste, S. K. (2021). Investigation of the tribological characteristics of aluminum 6061-Reinforced titanium carbide metal matrix composites. Nanomaterials, 11(11), 3039.
DOI: 10.3390/nano11113039
Google Scholar
[7]
Kumar, G. P., Keshavamurthy, R., Ramesh, C., & Channabasappa, B. (2015). Tribological Characteristics of Al6061-TiC Composite Synthesized by <i>In Situ</i> Technique. Applied Mechanics and Materials, 787, 653–657.
DOI: 10.4028/www.scientific.net/amm.787.653
Google Scholar
[8]
L,M., Reddy, J.S., & Mukunda, P.G. (2017). Compaction sintering and characterization of TIC reinforced aluminum metal matrix composites. International Journal of Mechanical Engineering, 4(2), 24–28. (hardness)
DOI: 10.14445/23488360/ijme-v4i2p104
Google Scholar
[9]
Suchendra, K. R., Sreenivasa, R. M., & Ravikumar, M. (2022). A Study on microstructure, mechanical and fracture behavior of Al2O3 - MoS2 reinforced Al6061 hybrid composite. Frattura Ed Integrità Strutturale, 16(61), 244–253.
DOI: 10.3221/igf-esis.61.16
Google Scholar
[10]
Hashim, J., Looney, L., Hashmi, M. S. J., & School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. (1999). Metal matrix composites: production by the stir casting method. In Journal of Materials Processing Technology (Vols. 92–93, p.1–7). Elsevier Science S.A.
DOI: 10.1016/s0924-0136(99)00118-1
Google Scholar
[11]
Chandela, N. K., Kant, S., & Goud, M. M. (2021). Mechanical, tribological and microstructural characterization of stir cast Al-6061 metal/matrix composites—a comprehensive review. Sadhana, 46(1).
DOI: 10.1007/s12046-021-01567-7
Google Scholar
[12]
Chandla, N. K., Kant, S., Goud, M. M., & Department of Production and Industrial Engineering, Punjab Engineering College (deemed to be university). (2021). Mechanical, tribological and microstructural characterization of stir cast Al-6061 metal/matrix composites—a comprehensive review. In Sådhanå (Vol. 46, p.47).
DOI: 10.1007/s12046-021-01567-7
Google Scholar
[13]
Rajasekaran, S., Udayashankar, N. K., & Nayak, J. (2012). T4 and T6 Treatment of 6061 Al-15 Vol. % SiCP Composite. ISRN Materials Science, 2012, 1–5.
DOI: 10.5402/2012/374719
Google Scholar
[14]
Karuppusamy, T., Velmurugan, C., & Thirumalaimuthukumaran, M. (2019). Experimental study on the mechanical properties of heat treated aluminium composites. Materials Research Express, 6(9), 096552.
DOI: 10.1088/2053-1591/ab2ebb
Google Scholar
[15]
Bandhu, D., Thakur, A., Purohit, R., Verma, R. K., & Abhishek, K. (2018). Characterization & evaluation of Al7075 MMCs reinforced with ceramic particulates and influence of age hardening on their tensile behavior. Journal of Mechanical Science and Technology, 32(7), 3123–3128.
DOI: 10.1007/s12206-018-0615-9
Google Scholar
[16]
Singh, H., Singh, G., Singh, K., & Vardhan, S. (2021). Evaluation of mechanical performance on a developed AA 6061matrix-Mg/0.9-Si/0.68 reinforced with B4C based composites. Functional Composites and Structures, 3(1), 015004.
DOI: 10.1088/2631-6331/abdb99
Google Scholar
[17]
Chacko, M., & Nayak, J. (2014). Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments. In World Academy of Science, Engineering and Technology, International Journal of Materials and Metallurgical Engineering (Vols. 8–8, Issue 3, p.221–221).
Google Scholar
[18]
Dhulipalla, A., Kumar, B. U., Akhil, V., Zhang, J., Lu, Z., Park, H., Jung, Y., & Zhang, J. (2020). Synthesis and machining characteristics of novel TiC ceramic and MoS2 soft particulate reinforced aluminium alloy 7075 matrix composites. Manufacturing Letters, 24, 82–86.
DOI: 10.1016/j.mfglet.2020.04.001
Google Scholar
[19]
Ramesh, C.S. and Safiulla, M. (2007), "Wear behaviour of hot extruded Al6061 based composites", Wear, Vol. 263, pp.629-35.
DOI: 10.1016/j.wear.2007.01.088
Google Scholar
[20]
Radhika, N., Subramanian, R., Prasat, S. V., & Anandavel, B. (2012). Dry sliding wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites. Industrial Lubrication and Tribology, 64(6), 359–366.
DOI: 10.1108/00368791211262499
Google Scholar
[21]
Rajesh, S., & Velmurugan, C. (2017). Investigation of Wear Behaviour of Al6061 reinforcement with TiC and MoS2. In CORE & KHALSA PUBLICATIONS, Journal of Advances in Chemistry (Vol. 13, Issue 3, p.32–34) [Journal-article].
DOI: 10.24297/jac.v13i0.5742
Google Scholar
[22]
Rajesh, S., Velmurugan, C., Manivelmuralidaran, V., & Pradeep, P. (2024). Dry sliding wear performance of hybrid composites, comprising AlMg1SiCu alloy, titanium carbide, and molybdenum disulfide fabricated through stir casting process at different temperature condition. Sadhana, 49(4).
DOI: 10.1007/s12046-024-02627-4
Google Scholar