Characterization of Jute and Bamboo Fiber Reinforced Hybrid Composites

Article Preview

Abstract:

In this work, jute and bamboo fiber is used as reinforcement to prepare hybrid composites. The alkali treatment of both the fibers are carried out and the strength of composites prepared with the alkali treated fiber is compared with the composites made from untreated fibers. The bamboo fibers are chopped and pulverized and added to matrix while the jute fiber is used in continuous form. Tensile, flexural, impact, hardness, thermal absorptivity test is carried along with the flammability test. The tensile strength of jute –bamboo-epoxy composite (JBEC) with untreated fibers is observed to be 12.21 MPa while the tensile strength of jute-epoxy composite (JEC) with untreated fiber composite is observed to be 11.72 MPa. Further, the alkali treatment of fiber increases the tensile strength of both the JEC and JBEC by 8%. About 11.12% rise in tensile strength in JEC and 14.35% rise in JBEC is observed due to alkali treatment of fibers. JBEC with alkali treated fibers [JBEC(AT)] shows 42.5HV hardness, while JBEC shows the hardness of 40.2HV. The hardness of JEC increased from 31.3HV to 35.5HV due to alkali treatment. JBEC and JEC with alkali treated fibers [JBEC(AT), JEC (AT)] shows higher thermal absorptivity than JBEC and JEC owing to the fact that higher thermal conductivity of bamboo fibers. The JBEC(AT) shows an ignition temperature of 301°C, while JBEC starts burning at a temperature of 285.6°C. JEC starts burning at 256.56°C and JEC burns by 248.52°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1171)

Pages:

29-36

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Parida, D. Mishra, R.L. Padhy, P.C. Jena, S.R. Das, A.A. Basem, D. Dhupal, A. Elsheikh, Effect of alkali treatment on mechanical and buckling behaviour of natural fiber reinforced composite cylinder. ES Mater. Manuf. 24(2024)1161.

Google Scholar

[2] H. Li, S. Shen, The mechanical properties of bamboo and vascular bundles.J. Mater. Res. Technol. 26(2011) 2749-2756.

DOI: 10.1557/jmr.2011.314

Google Scholar

[3] Y. Yu, G. Tian, H. Wang, B. Fei, G. Wang, Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung.65(2011) 113-119.

DOI: 10.1515/hf.2011.009

Google Scholar

[4] S.N. Monteiro, F.M. Margem, F. de Oliveira Braga, F.S. da Luz, N.T. Simonassi, Weibull analysis of the tensile strength dependence with fiber diameter of giant bamboo. J. Mater. Res. Technol. 6(2017)317-22.

DOI: 10.1016/j.jmrt.2017.07.001

Google Scholar

[5] R. Wimmer, B.N. Lucas, W.C. Oliver, T.Y. Tsui, Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique. Wood Sci. Technol. 3(1997)131-41.

DOI: 10.1007/bf00705928

Google Scholar

[6] D. H. Page, F. El-Hosseiny, K. Winkler Behaviour of single wood fibres under axial tensile strain.Nature.229(1971) 252-253.

DOI: 10.1038/229252a0

Google Scholar

[7] S. Salim, T. Rihayat, S. Riskina, A. Safitri, Physical and mechanical properties of bamboo/flax fibre reinforced epoxy composite water absorption behaviour and high-temperature conditions. Plast. Rubber. Compos. 50(2021) 415-424.

DOI: 10.1080/14658011.2021.1910776

Google Scholar

[8] Y. Huang, B. Fei, P. Wei, C. Zhao, Mechanical properties of bamboo fiber cell walls during the culm development by nanoindentation. Ind. Cro.p Prod.92(2016) 102-108.

DOI: 10.1016/j.indcrop.2016.07.037

Google Scholar

[9] C. Chen, Z. Li, R. Mi, J. Dai, H. Xie, Y. Pei, Hu L, Rapid processing of whole bamboo with exposed, aligned nanofibrils toward a high-performance structural material.ACS nano.14(2020) 5194-5202.

DOI: 10.1021/acsnano.9b08747

Google Scholar

[10] Z. Li, C. Chen, R. Mi, W. Gan, J. Dai, M. Jiao,... L. Hu, A strong, tough, and scalable structural material from fast‐growing bamboo. Adv. Mater. 32(2020), 1906308.

DOI: 10.1002/adma.201906308

Google Scholar

[11] S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, H. Shimizu, Fiber texture and mechanical graded structure of bamboo. Composites Part B: Engineering,28(1997), 13-20.

DOI: 10.1016/s1359-8368(96)00020-0

Google Scholar

[12] Y. Huang, Y. Ji, W. Yu, Development of bamboo scrimber: A literature review.J. Wood Sci. 65(2019), 1-10.

Google Scholar

[13] A.K. Rana, A. Mandal, S. Bandyopadhyay, Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading.Compos. Sci. Technol.63(2003), 801-806.

DOI: 10.1016/s0266-3538(02)00267-1

Google Scholar

[14] D.U. Shah, Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J. mater. Sci.48(2013) 6083-6107.

DOI: 10.1007/s10853-013-7458-7

Google Scholar

[15] M.H. Zamri, H.M. Akil, A.A. Bakar, Z.A.M. Ishak, L.W. Cheng, Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites.J. compos. Mater.46(2013), 51-61.

DOI: 10.1177/0021998311410488

Google Scholar

[16] S.P. Parida, P.C. Jena, Multi-fillers GFRP laminated composite plates: fabrication & properties. Indian J. Eng. Mater. Sci. 29(2023) 817-25.

Google Scholar

[17] S.P. Parida, P.C. Jena, M. Swain, K.P. Shadangi Fabrication of geopolymer composites using egg-shell and fly-ash: Comparison between the strength and stability, physio-chemical and mechanical properties. Process Saf. Environ. Prot. 187(2024) 1140-1149.

DOI: 10.1016/j.psep.2024.05.020

Google Scholar

[18] S.P. Parida, S. Sahoo, B.B. Bal, P.C. Jena, Buckling analysis of functionally graded natural fiber-Flyash-Epoxy (FGNFFE) Cylinder. Int. J. Eng. Adv. Technol.8(2019) 4260-4265.

DOI: 10.35940/ijeat.f9118.088619

Google Scholar

[19] S. Singh, S.P. Parida, P. Ekka, P.C. Jena. Characterization of fabricated FG pipe with natural fiber-flyash-epoxy using centrifugal casting. Int. J. Innov. Technol. Explor. Eng. 8(2019) 734-741.

DOI: 10.35940/ijitee.k1437.0981119

Google Scholar

[20] P.K. Saraswati, S. Sahoo, S.P. Parida, P.C. Jena, Fabrication, characterization and drilling operation of natural fiber reinforced hybrid composite with filler (fly-ash/graphene). Int. J. Innov. Technol. Explor. Eng. 8 (2019)1653-1659.

DOI: 10.35940/ijitee.j1253.0881019

Google Scholar

[21] M.A. Fuqua, S. Huo, C. A. Ulven, Natural fiber reinforced composites. Polym. Rev. 52(2012) 259-320.

DOI: 10.1080/15583724.2012.705409

Google Scholar

[22] A. Gomes, T. Matsuo, K. Goda, J. Ohgi, Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos. Part. A-Appl. S. 38(2007) 1811-1820.

DOI: 10.1016/j.compositesa.2007.04.010

Google Scholar

[23] J.A. Khan, M.A. Khan, (2015). The use of jute fibers as reinforcements in composites. In Biofiber Reinforcements in composite materials Woodhead Publishing, 2015, pp.3-34).

DOI: 10.1533/9781782421276.1.3

Google Scholar

[24] G.A. Khan, M. Terano, M.A. Gafur, M.S. Alam, Studies on the mechanical properties of woven jute fabric reinforced poly (l-lactic acid) composites. J. King Saud Univ. Eng. Sci.,28(2016), 69-74.

DOI: 10.1016/j.jksues.2013.12.002

Google Scholar

[25] A. Memon, A. Nakai, Fabrication and mechanical properties of jute spun yarn/PLA unidirection composite by compression molding. Energy Procedia.34(2013) 830-838.

DOI: 10.1016/j.egypro.2013.06.819

Google Scholar

[26] M. Das, V.S. Prasad, D. Chakrabarty, Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber.Polym. Compos.30(2009) 1408-1416.

DOI: 10.1002/pc.20705

Google Scholar

[27] V.L. Narayana, L.B. Rao, A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites.Mater Today Proc44(2021)1988-1994.

DOI: 10.1016/j.matpr.2020.12.117

Google Scholar

[28] M. Sood, G. Dwivedi, Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyp J petrol27-4(2018)775-783.

DOI: 10.1016/j.ejpe.2017.11.005

Google Scholar