[1]
Shu S, Guo JX, Li J, Fang NJ, Yuan SD. The enhanced performance of Ti doped MnOx for the removal of NO with NH3. J. Taiwan. Inst. Chem. Eng. 100 (2019) 168-177.
DOI: 10.1016/j.jtice.2019.04.019
Google Scholar
[2]
Zhai SY, Su YT, Weng XL, Li RN, Wang HQ, Wu ZB. Synergistic elimination of NOx and chlorinated organics over VOx/TiO2 catalysts: a combined experimental and DFT study for exploring vanadate domain effect. Environ. Sci. Tech. 55 (2021) 12862–12870.
DOI: 10.1021/acs.est.1c02997.s001
Google Scholar
[3]
Gao FY, Tang XL, Yi HH, Li JY, Zhao SZ, Wang JG, Chu C, Li CL. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 317 (2017) 20-31.
DOI: 10.1016/j.cej.2017.02.042
Google Scholar
[4]
Lian ZH, Wei J, Shan, WP, Yu YB, Radjenovic P M, Zhang H, He GZ, Liu, FD, Li J-F, Tian Z-Q, He H. Adsorption-induced active vanadium species facilitate excellent performance in low-temperature catalytic NOx abatement. J. Am. Chem. Soc. 143 (2021) 10454–10461.
DOI: 10.1021/jacs.1c05354
Google Scholar
[5]
Moliner M, Franch C, Palomares E, Grill M, Corma A. Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chem. Commun. 48 (2012) 8264-8266.
DOI: 10.1039/c2cc33992g
Google Scholar
[6]
Gao FY, Tang XL, Yi HH, Zhao SZ, Li CL, Li JY, Shi YR, Meng XM. A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts. 7 (2017) 199.
DOI: 10.3390/catal7070199
Google Scholar
[7]
Liu C, Shi J-W, Gao C, Niu CM. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3 : A review. Appl. Catal. A. 522 (2016) 54-69.
DOI: 10.1016/j.apcata.2016.04.023
Google Scholar
[8]
Wu ZB, Jin RB, Liu Y, Wang HQ. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun. 9 (2008) 2217-2220.
DOI: 10.1016/j.catcom.2008.05.001
Google Scholar
[9]
Ren S, Li XD, He C, Chen L, Wang L, Li FG. Surface tailoring on bifunctional CuOx/MnO2 catalyst to promote the selective catalytic reduction of NO with NH3 and oxidation of CO with O2. Sep. Purif. Technol. 346 (2024) 127471.
DOI: 10.1016/j.seppur.2024.127471
Google Scholar
[10]
Wang S, Zhu N, Xu PP, Li S, Chen D. Si-modified Mn–Ce oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperatures. New. J. Chem. 47 (2023) 12893-12901.
DOI: 10.1039/d3nj02345a
Google Scholar
[11]
Liu FD, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study. Catal. Today. 153 (2010) 70-76.
DOI: 10.1016/j.cattod.2010.02.043
Google Scholar
[12]
Thirupathi B., Smirniotis P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B. 10 (2011) 195-206.
DOI: 10.1016/j.apcatb.2011.09.001
Google Scholar
[13]
Li HX, Li ZH, Jin LY, Zhang Y, Zhang AC, Sun ZJ. Effect of Mn content in Mn2−2yCoyCryOx catalyst on catalytic performance for SCR at low temperature. Chem. Phys. Lett. 831 (2023) 140843.
DOI: 10.1016/j.cplett.2023.140843
Google Scholar
[14]
Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J. Catal. 325 (2015) 145-155.
DOI: 10.1016/j.jcat.2015.03.002
Google Scholar
[15]
Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ. Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Appl. Catal. B. 110 (2011) 71-80.
DOI: 10.1016/j.apcatb.2011.08.027
Google Scholar
[16]
Wang JL, Li DD, Li PL, Zhang PY, Xu QL, Yu JG. Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations. RSC. Adv. 5 (2015) 100434-100442.
DOI: 10.1039/c5ra17018d
Google Scholar
[17]
Yin H, Feng XH, Qiu GH, Tan WF, Liu F. Characterization of Co-doped birnessites and application for removal of lead and arsenite. J. Hazard. Mater. 188 (2011) 341-349.
DOI: 10.1016/j.jhazmat.2011.01.129
Google Scholar
[18]
Wang JL, Zhang GK, Zhang PY. Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. J. Mater. Chem. A. 5 (2017) 5719-5725.
DOI: 10.1039/c6ta09793f
Google Scholar
[19]
Ye Q, Lu H, Zhao J, Cheng SY, Kang TF, Wang D, Dai HX. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Appl. Surf. Sci. 317 (2014) 892-901.
DOI: 10.1016/j.apsusc.2014.08.126
Google Scholar
[20]
Ma N, Kosasang S, Chomkhuntod P, Duangdangchote S, Phattharasupakun N, Klysubun W, Sawangphruk M. Insight into the unusual intercalation/deintercalation phenomena of alkali cations in the layered manganese oxide for electrochemical capacitors. J. Power. Sources. 455 (2020) 227969.
DOI: 10.1016/j.jpowsour.2020.227969
Google Scholar
[21]
Zhu L, Wang JL, Rong SP, Wang HY, Zhang PY. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Appl. Catal. B. 211 (2017) 212-221.
DOI: 10.1016/j.apcatb.2017.04.025
Google Scholar
[22]
Wang JL, Li JG, Jiang CJ, Zhou P, Zhang PY, Yu JG. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl. Catal. B. 204 (2017) 147-155.
DOI: 10.1016/j.apcatb.2016.11.036
Google Scholar
[23]
Wang JL, Zhang GK, Zhang PY. Layered birnessite-type MnO2 with surface pits for enhanced catalytic formaldehyde oxidation activity. J. Mater. Chem. A. 5 (2017) 5719-5725.
DOI: 10.1039/c6ta09793f
Google Scholar
[24]
Wang, JL, Zhang PY, Li JG, Jiang CJ, Yunus R, Kim J. Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. Environ. Sci. Technol. 49 (2015) 12372-12379.
DOI: 10.1021/acs.est.5b02085
Google Scholar
[25]
Lu L, Tian H, He JH, Yang QW. Graphene-MnO2 Hybrid Nanostructure as a New Catalyst for Formaldehyde Oxidation. J. Phys. Chem. C. 120 (2016) 23660-23668.
DOI: 10.1021/acs.jpcc.6b08312
Google Scholar
[26]
Liu FD, He H, Ding Y, Zhang CB. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Appl. Catal. B. 93 (2009) 194-204.
DOI: 10.1016/j.apcatb.2009.09.029
Google Scholar
[27]
Ettireddy P R, Ettireddy N, Mamedov S, Boolchand P, Smirniotis P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl. Catal. B. 76 (2007) 123-134.
DOI: 10.1016/j.apcatb.2007.05.010
Google Scholar
[28]
Deorsola F. A, Andreoli S, Armandi M, Bonelli B, Pirone R. Unsupported nanostructured Mn oxides obtained by Solution Combustion Synthesis: Textural and surface properties, and catalytic performance in NOx SCR at low temperature. Appl. Catal. A. 552 (2016) 120-129.
DOI: 10.1016/j.apcata.2016.05.002
Google Scholar
[29]
France L J, Yang Q, Li W, Chen ZB, Guang JY, Guo DW, Wang LF, Li XH. Ceria modified FeMnOx—Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal. 206 (2017) 203-215.
DOI: 10.1016/j.apcatb.2017.01.019
Google Scholar
[30]
Lv SS, Zhang XL, Dong HY, Jin S, Wang XY. Microstructure and Catalytic Activity of MnSbOx Catalysts for Selective Catalytic Reduction of NO with NH3. Chem. Eng. Technol. 46 (2023) 2214-2225.
DOI: 10.1002/ceat.202300148
Google Scholar
[31]
Cao J, Rohani S, Liu WZ, Liu HH, Lu ZQ, Wu HL, Jiang LJ, Kong M, Liu QC, Yao XJ. Influence of phosphorus on the NH3-SCR performance of CeO2TiO2 catalyst for NOx removal from co-incineration flue gas of domestic waste and municipal sludge. J. Colloid. Interface. Sci. 610 (2022) 463–473.
DOI: 10.1016/j.jcis.2021.11.013
Google Scholar
[32]
Zhao XT, Mao L, Dong GJ. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides. Catalysts. 8 (2018) 76.
DOI: 10.3390/catal8020076
Google Scholar
[33]
Shu S, Guo JX, Li J, Fang NJ, Li JJ, Yuan SD. Effect of post-treatment on the selective catalytic reduction of NO with NH3 over Mn3O4. Mater. Chem. Phys. 237 (2019) 121845.
DOI: 10.1016/j.matchemphys.2019.121845
Google Scholar
[34]
Post J. E, Veblen D.R. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am. Mineral. 75 (1990) 477-489.
Google Scholar
[35]
Yang YR, Wang MH, Tao ZL, Liu Q, Fei ZY, Chen X, Zhang ZX, Tang JH, Cui MF, Qiao X. Mesoporous Mn–Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst. Catal. Sci. Technol. 8 (2018) 6396-6406.
DOI: 10.1039/c8cy01313f
Google Scholar
[36]
Jia BH, Guo JX, Shu S, Fang NJ, Li JJ, Chu YH. Effects of different Zr/Ti ratios on NH3–SCR over MnOx /ZryTi1-yO2: Characterization and reaction mechanism. Mol. Catal. 443 (2017) 25-37.
DOI: 10.1016/j.mcat.2017.09.019
Google Scholar
[37]
Yin H, Li H, Wang Y, Ginder-Vogel M, Qiu GH, Feng XH, Zheng LR, Liu F. Effects of Co and Ni co-doping on the structure and reactivity of hexagonal birnessite. Chem. Geol. 381 (2014) 10-20.
DOI: 10.1016/j.chemgeo.2014.05.017
Google Scholar
[38]
Kim S S, Hong S C. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation. J. Air. Waste. Manage. Assoc. 62 (2012) 362-369.
DOI: 10.1080/10473289.2011.653515
Google Scholar
[39]
Kang M, Park E D, Kim J M, Yie J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A. 327 (2007) 261-269.
DOI: 10.1016/j.apcata.2007.05.024
Google Scholar
[40]
Raj A.M E, Victoria S.G, Jothy V.B, Ravidhas C, Wollschlager J, Suendorf M, Neumann M, Jayachandran M, Sanjeeviraja C. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl. Surf. Sci. 256 (2010) 2920-2926.
DOI: 10.1016/j.apsusc.2009.11.051
Google Scholar
[41]
Yuan S, Sheng QR, Zhang JL, Yamashita H, He DN. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity. Microporous. Mesoporous. Mater. 110 (2008) 501-507.
DOI: 10.1016/j.micromeso.2007.06.039
Google Scholar
[42]
Ismail A, Li MY, Zahid M, Fan LM, Zhang C, Li ZB, Zhu YJ. Effect of strong interaction between Co and Ce oxides in CoxCe1-xO2-δ oxides on its catalytic oxidation of toluene. Mol. Catal. 502 (2021) 111365.
DOI: 10.1016/j.mcat.2020.111356
Google Scholar
[43]
Lei ZH, Cheng PF, Wang YL, Xu LP, Lv L, Li X, Sun SF, Hao XD, Zhang YQ, Zhang Y, Weng Z. Pt-doped α-Fe2O3 mesoporous microspheres with low-temperature ultrasensitive properties for gas sensors in diabetes detection. Appl. Surf. Sci. 607 (2023) 154558.
DOI: 10.1016/j.apsusc.2022.154558
Google Scholar
[44]
Liu C, Xian H, Jiang Z, Wang LH, Zhang J, Zheng LR, Tan YS, Li XG. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Appl. Catal. B. 176-177 (2015) 542-552.
DOI: 10.1016/j.apcatb.2015.04.042
Google Scholar
[45]
Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 288 (2012) 74-83.
DOI: 10.1016/j.jcat.2012.01.003
Google Scholar
[46]
Kijlstra W.S, Brands D.S, Poels E.K, Bliek A. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3. J. Catal. 171 (1997) 208-218.
DOI: 10.1006/jcat.1997.1788
Google Scholar
[47]
Maqbool M S, Pullur A K, Ha H P. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2 catalyst for NH3-SCR. Appl. Catal. B. 152-153 (2014) 28-37.
DOI: 10.1016/j.apcatb.2014.01.017
Google Scholar
[48]
Lu XN, Song CY, Jia SH, Tong ZS, Tang XL, Teng YX. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chem. Eng. J. 260 (2015) 776-784.
DOI: 10.1016/j.cej.2014.09.058
Google Scholar
[49]
Li JY, Cui W, Sun YJ, Chu YH, Cen WL, Dong F. Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency. J. Mater. Chem. A. 5 (2017) 9358-9364.
DOI: 10.1039/c7ta02183f
Google Scholar
[50]
Royer S, Duprez D, Kaliaguine S. Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3. J. Catal. 364 (2005) 364-375.
DOI: 10.1016/j.jcat.2004.11.041
Google Scholar
[51]
Gac W, Stowik G, Zawadzki W. Structural and surface changes of copper modified manganese oxides. Appl. Surf. Sci. 370 (2016) 536-544.
DOI: 10.1016/j.apsusc.2016.02.136
Google Scholar
[52]
Sakai M, Nagai Y, Aoki Y, Takahashi N. Investigation into the catalytic reduction of NOx at copper–ceria interface active sites. Appl. Catal. A. 510 (2016) 57-63.
DOI: 10.1016/j.apcata.2015.11.007
Google Scholar