Modeling the Behavior of Spherical Particles Using the Discrete Element Method (DEM)

Article Preview

Abstract:

The article discusses the application of the discrete element method (DEM) for modeling the behavior of spherical particles in granular media. Key aspects of particle contact interactions, including frictional forces, elasticity, coordination number, and the shape factor of spherical particles, are analyzed and investigated. It is worth noting that the proposed methodology enables the study of the mechanical properties of systems with particles of various sizes and compositions, as well as the modeling of their behavior in confined spaces and under dynamic influences. The modeling results demonstrate the high accuracy and versatility of the DEM for analyzing processes in bulk materials, particularly transportation, mixing, and granulation. The findings underscore the effectiveness of using DEM to solve complex problems and highlight prospects for its further improvement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1171)

Pages:

93-103

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.

DOI: 10.1016/j.rico.2023.100238

Google Scholar

[2] V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141

DOI: 10.4028/p-85YY1q

Google Scholar

[3] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[4] Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662(2022)1-17.

DOI: 10.1016/j.ijpharm.2024.124515

Google Scholar

[5] V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125

DOI: 10.4028/p-vqM060

Google Scholar

[6] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[7] V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136

DOI: 10.4028/p-5aAMEf

Google Scholar

[8] Li. Ke, Gu. Dali, Gu. Zixi, Zh. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1-15.

Google Scholar

[9] V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13

DOI: 10.4028/p-5KGuD9

Google Scholar

[10] L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.

DOI: 10.1155/2021/4343255

Google Scholar

[11] L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.

Google Scholar

[12] V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15-25

DOI: 10.4028/p-Xm5pzL

Google Scholar

[13] Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.

DOI: 10.1016/j.heliyon.2024.e24166

Google Scholar

[14] V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37

DOI: 10.4028/p-DBbwY3

Google Scholar

[15] Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.

DOI: 10.3390/mca29050090

Google Scholar

[16] M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech. 299 (2022) 1–15.

DOI: 10.1016/j.jmatprotec.2021.117378

Google Scholar

[17] V. Pasternak, O. Zabolotnyi, K. Svirzhevskyi, I. Zadorozhnikova, J. Machado, Influence of mechanical processing on the durability of parts in additive manufacturing conditions. Lecture Notes in Mechanical Engineering. (2023) 24–35

DOI: 10.1007/978-3-031-09382-1_3

Google Scholar

[18] M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.

DOI: 10.4279/pip.140015

Google Scholar

[19] D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.

DOI: 10.3390/math10234595

Google Scholar

[20] V. Pasternak, H. Sulym, I.M. Pasternak, I. Hotsyk, Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green's functions and fracture mechanics. International Journal of Engineering Science. 203 (2024) 104124. https://www.sciencedirect.com/science/article/abs/pii/S0020722524001083

DOI: 10.1016/j.ijengsci.2024.104124

Google Scholar

[21] M. Shawki, M. Eltarahony, M. Maisa, The Impact of Titanium Oxide Nanoparticles and Low Direct Electric Current on biofilm Dispersal of Bacillus Cereus and Pseudomonas Aeruginosa: a Comparative Study. Papers in Physics. 13 (2021) 1–14.

DOI: 10.4279/pip.130005

Google Scholar

[22] Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166 (2021).

DOI: 10.15587/978-617-7319-43-5

Google Scholar

[23] A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban, D. Nestorenko, Features of some polymer building materials behavior at heating. Materials Science Forum. 1006 (2020) 47–54.

DOI: 10.4028/www.scientific.net/msf.1006.47

Google Scholar

[24] L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.

DOI: 10.14743/apem2024.3.514

Google Scholar

[25] D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.

DOI: 10.3390/jmse9111157

Google Scholar

[26] H. Sun, H. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.

DOI: 10.2478/amns.2022.1.00021

Google Scholar

[27] A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499

DOI: 10.4028/www.scientific.net/msf.1038.492

Google Scholar

[28] Al. Wannas Akeel, H. Auday Shaker, N. H. Hamza, Elastic – Plastic Analysis of the Plane Strain Under Combined Thermal and Pressure Loads with a New Technique in the Finite Element Method. Open Engineering. 12 (2022) 477–484.

DOI: 10.1515/eng-2022-0049

Google Scholar

[29] V. Pasternak, A. Ruban, N. Zolotova, O. Suprun, Computer modeling of inhomogeneous media using the Abaqus software package. Defect and Diffusion Forum. 428 (2023) 47–56. https://www.scientific.net/DDF.428.47

DOI: 10.4028/p-xti7h9

Google Scholar

[30] P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.

DOI: 10.1016/j.mineng.2023.108491

Google Scholar

[31] V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286-287 (2024) 112562

DOI: 10.1016/j.ijsolstr.2023.112562

Google Scholar

[32] M. Ahmadian, Simulation of Irregularly Shaped Particles Using Coupling Method of Lattice Boltzmann and Discrete Element Modelling. UNBS. 1 (2024) 1–65.

DOI: 10.24124/2024/59473

Google Scholar

[33] D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.

DOI: 10.3390/math10234595

Google Scholar

[34] O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.

DOI: 10.4028/www.scientific.net/msf.1038.15

Google Scholar

[35] B. Jadidi, M. Ebrahimi, F. Ein-Mozaffari, Al. Lohi, Analyzing Mixing Behavior in a Double Paddle Blender Containing Two Types of Non-Spherical Particles Through Discrete Element Method (DEM) and Response Surface Method (RSM). Powder Technology. 427 (2023) 1–20.

DOI: 10.1016/j.powtec.2023.118761

Google Scholar

[36] B. Prydalnyi, H. Sulym, Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link. Acta Mechanica et Automatica. 15 (2021) 47–52

DOI: 10.2478/ama-2021-0007

Google Scholar

[37] Sh. Zhao, J. Zhaо, SudoDEM: Unleashing the Predictive Power of the Discrete Element Method on Simulation for Non-Spherical Granular Particles. Computer Physics Communications. 259 (2021) 1–19.

DOI: 10.1016/j.cpc.2020.107670

Google Scholar

[38] V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214

DOI: 10.4028/p-9jq543

Google Scholar

[39] Ch. Hoshishima, Sh. Ohsaki, H. Nakamura, S. Watano, Parameter Calibration of Discrete Element Method Modelling for Cohesive and Non-Spherical Particles of Powder. Powder Technology. 386 (2021) 199–208.

DOI: 10.1016/j.powtec.2021.03.044

Google Scholar

[40] L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Discrete Element Method (DEM). Discrete Element Method for Multiphase Flows with Biogenic Particles. 1 (2024) 83–102.

DOI: 10.1007/978-3-031-67729-8_5

Google Scholar

[41] Z. Fang, X. Qian, Y. Zhang, W. Liu, Sh. Li, A New Discrete Element Method for Small Adhesive Non-Spherical Particles. Journal of Computational Physics. 513 (2024) 1–20.

DOI: 10.1016/j.jcp.2024.113193

Google Scholar

[42] A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231–238

DOI: 10.4028/p-18k386

Google Scholar

[43] D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.

Google Scholar

[44] Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences. 60 (2018) № 00003.

DOI: 10.1051/e3sconf/20186000003

Google Scholar

[45] V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35. https://www.scientific.net/DDF.428.27

DOI: 10.4028/p-sx9ljy

Google Scholar