[1]
C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.
DOI: 10.1016/j.rico.2023.100238
Google Scholar
[2]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141
DOI: 10.4028/p-85YY1q
Google Scholar
[3]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[4]
Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662(2022)1-17.
DOI: 10.1016/j.ijpharm.2024.124515
Google Scholar
[5]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125
DOI: 10.4028/p-vqM060
Google Scholar
[6]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[7]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136
DOI: 10.4028/p-5aAMEf
Google Scholar
[8]
Li. Ke, Gu. Dali, Gu. Zixi, Zh. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1-15.
Google Scholar
[9]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13
DOI: 10.4028/p-5KGuD9
Google Scholar
[10]
L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm. Advances in Mathematical Physics. 1 (2021) 1–10.
DOI: 10.1155/2021/4343255
Google Scholar
[11]
L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.
Google Scholar
[12]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15-25
DOI: 10.4028/p-Xm5pzL
Google Scholar
[13]
Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.
DOI: 10.1016/j.heliyon.2024.e24166
Google Scholar
[14]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37
DOI: 10.4028/p-DBbwY3
Google Scholar
[15]
Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.
DOI: 10.3390/mca29050090
Google Scholar
[16]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[17]
V. Pasternak, O. Zabolotnyi, K. Svirzhevskyi, I. Zadorozhnikova, J. Machado, Influence of mechanical processing on the durability of parts in additive manufacturing conditions. Lecture Notes in Mechanical Engineering. (2023) 24–35
DOI: 10.1007/978-3-031-09382-1_3
Google Scholar
[18]
M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.
DOI: 10.4279/pip.140015
Google Scholar
[19]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[20]
V. Pasternak, H. Sulym, I.M. Pasternak, I. Hotsyk, Extended Stroh formalism for plane problems of thermoelasticity of quasicrystals with applications to Green's functions and fracture mechanics. International Journal of Engineering Science. 203 (2024) 104124. https://www.sciencedirect.com/science/article/abs/pii/S0020722524001083
DOI: 10.1016/j.ijengsci.2024.104124
Google Scholar
[21]
M. Shawki, M. Eltarahony, M. Maisa, The Impact of Titanium Oxide Nanoparticles and Low Direct Electric Current on biofilm Dispersal of Bacillus Cereus and Pseudomonas Aeruginosa: a Comparative Study. Papers in Physics. 13 (2021) 1–14.
DOI: 10.4279/pip.130005
Google Scholar
[22]
Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166 (2021).
DOI: 10.15587/978-617-7319-43-5
Google Scholar
[23]
A. Vasilchenko, O. Danilin, T. Lutsenko, A. Ruban, D. Nestorenko, Features of some polymer building materials behavior at heating. Materials Science Forum. 1006 (2020) 47–54.
DOI: 10.4028/www.scientific.net/msf.1006.47
Google Scholar
[24]
L. Lipus, В. Acko, B., R. Klobucar, Enhancing Calibration Accuracy with Laser Interferometry for High-Resolution Measuring Systems. Advances in Production Engineering and Management. 19 (2024) 386–394.
DOI: 10.14743/apem2024.3.514
Google Scholar
[25]
D. Huaiping, W. Qiao, Hu. Wei, Y. Xiaochun, Spatial Rigid-Flexible-Liquid Coupling Dynamics of Towed System Analyzed by a Hamiltonian Finite Element Method. Journal of Marine Science and Engineering. 9 (2021) 1–18.
DOI: 10.3390/jmse9111157
Google Scholar
[26]
H. Sun, H. Elzefzafy, Study on Transmission Characteristics in Three Kinds of Deformed Finlines Based on Edge-Based Finite Element Method. Applied Mathematics and Nonlinear Sciences. 8 (2023) 35–44.
DOI: 10.2478/amns.2022.1.00021
Google Scholar
[27]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[28]
Al. Wannas Akeel, H. Auday Shaker, N. H. Hamza, Elastic – Plastic Analysis of the Plane Strain Under Combined Thermal and Pressure Loads with a New Technique in the Finite Element Method. Open Engineering. 12 (2022) 477–484.
DOI: 10.1515/eng-2022-0049
Google Scholar
[29]
V. Pasternak, A. Ruban, N. Zolotova, O. Suprun, Computer modeling of inhomogeneous media using the Abaqus software package. Defect and Diffusion Forum. 428 (2023) 47–56. https://www.scientific.net/DDF.428.47
DOI: 10.4028/p-xti7h9
Google Scholar
[30]
P. Hirschberger, Th. Trang Võ, Urs. Peuker, H. Kruggel-Emden, A Texture Inheritance Model for Spherical Particles in Particle Replacement Method (PRM) Schemes for Breakage in Discrete Element Method (DEM) Simulations. Minerals Engineering. 205 (2024) 1–19.
DOI: 10.1016/j.mineng.2023.108491
Google Scholar
[31]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286-287 (2024) 112562
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[32]
M. Ahmadian, Simulation of Irregularly Shaped Particles Using Coupling Method of Lattice Boltzmann and Discrete Element Modelling. UNBS. 1 (2024) 1–65.
DOI: 10.24124/2024/59473
Google Scholar
[33]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[34]
O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15–24.
DOI: 10.4028/www.scientific.net/msf.1038.15
Google Scholar
[35]
B. Jadidi, M. Ebrahimi, F. Ein-Mozaffari, Al. Lohi, Analyzing Mixing Behavior in a Double Paddle Blender Containing Two Types of Non-Spherical Particles Through Discrete Element Method (DEM) and Response Surface Method (RSM). Powder Technology. 427 (2023) 1–20.
DOI: 10.1016/j.powtec.2023.118761
Google Scholar
[36]
B. Prydalnyi, H. Sulym, Identification of analytical dependencies of the operational characteristics of the workpiece clamping mechanisms with the rotary movement of the input link. Acta Mechanica et Automatica. 15 (2021) 47–52
DOI: 10.2478/ama-2021-0007
Google Scholar
[37]
Sh. Zhao, J. Zhaо, SudoDEM: Unleashing the Predictive Power of the Discrete Element Method on Simulation for Non-Spherical Granular Particles. Computer Physics Communications. 259 (2021) 1–19.
DOI: 10.1016/j.cpc.2020.107670
Google Scholar
[38]
V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214
DOI: 10.4028/p-9jq543
Google Scholar
[39]
Ch. Hoshishima, Sh. Ohsaki, H. Nakamura, S. Watano, Parameter Calibration of Discrete Element Method Modelling for Cohesive and Non-Spherical Particles of Powder. Powder Technology. 386 (2021) 199–208.
DOI: 10.1016/j.powtec.2021.03.044
Google Scholar
[40]
L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Discrete Element Method (DEM). Discrete Element Method for Multiphase Flows with Biogenic Particles. 1 (2024) 83–102.
DOI: 10.1007/978-3-031-67729-8_5
Google Scholar
[41]
Z. Fang, X. Qian, Y. Zhang, W. Liu, Sh. Li, A New Discrete Element Method for Small Adhesive Non-Spherical Particles. Journal of Computational Physics. 513 (2024) 1–20.
DOI: 10.1016/j.jcp.2024.113193
Google Scholar
[42]
A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231–238
DOI: 10.4028/p-18k386
Google Scholar
[43]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.
Google Scholar
[44]
Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences. 60 (2018) № 00003.
DOI: 10.1051/e3sconf/20186000003
Google Scholar
[45]
V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35. https://www.scientific.net/DDF.428.27
DOI: 10.4028/p-sx9ljy
Google Scholar