Using Numerical Methods in Scilab to Simulate Particle Trajectories under the Action of Various Forces (Gravity, Electromagnetism, Friction)

Article Preview

Abstract:

The article considers the use of numerical methods in the SCILAB environment for modeling particle trajectories under the influence of various physical forces: gravity, electromagnetism and friction. The simulations conducted allowed us to study the dynamics of particle motion in three-dimensional space under various conditions, in particular the influence of forces on changing trajectories and stabilizing motion. The results obtained demonstrate the effectiveness of using the SCILAB software as a tool for numerical modeling of complex physical systems, which ensures the accuracy of calculations and clarity of visualization. It should also be noted that the use of such approaches allows us to study particle motion in various fields of science and technology, in particular in physics, engineering and systems analysis. Numerical methods implemented in SCILAB provide flexibility in taking into account the initial conditions and parameters of the system, opening up prospects for further research into complex interactions in multicomponent systems.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141

DOI: 10.4028/p-85YY1q

Google Scholar

[2] C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.

DOI: 10.1016/j.rico.2023.100238

Google Scholar

[3] T. Zhang, D. Chen, H. Yang, W. Zhao, Y. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing, Polymers. 16 (2024) 1-12.

DOI: 10.3390/polym16091179

Google Scholar

[4] V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125

DOI: 10.4028/p-vqM060

Google Scholar

[5] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[6] Zah. Ghasemi Monfared, J. Gunnar I. Hellstrom, Ken. Umeki, The Impact of Discrete Element Method Parameters on Realistic Representation of Spherical Particles in a Packed Bed. Processes. 12 (2024) 1–17.

DOI: 10.3390/pr12010183

Google Scholar

[7] T. Lu, T. He, Z. Li, H. Chen, X. Han, Z. Fu, W. Chen, Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles. Journal of Materials Research and Technology. 9 (2020) 1–19.

DOI: 10.1016/j.jmrt.2020.09.034

Google Scholar

[8] V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136

DOI: 10.4028/p-5aAMEf

Google Scholar

[9] Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662 (2022) 1–17.

DOI: 10.1016/j.ijpharm.2024.124515

Google Scholar

[10] J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.

DOI: 10.1016/j.optlastec.2021.107658

Google Scholar

[11] V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13

DOI: 10.4028/p-5KGuD9

Google Scholar

[12] H. Wang, J. Li, G. Hu, B. Zhou, Y. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1–15.

DOI: 10.3390/coatings11091075

Google Scholar

[13] L. Ke, G. Dali, G. Zixi, Z. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1–15.

Google Scholar

[14] V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25

DOI: 10.4028/p-Xm5pzL

Google Scholar

[15] Y. Huang, W. Sun, Q. Xie, H. You, K. Wu, Discrete Element Simulation of the Shear Behavior of Binary Mixtures Composed of Spherical and Cubic Particles. Applied Sciences. 13 (2023) 1–19.

DOI: 10.3390/app13169163

Google Scholar

[16] L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm, Advances in Mathematical Physics. 1 (2021) 1–10.

DOI: 10.1155/2021/4343255

Google Scholar

[17] V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37

DOI: 10.4028/p-DBbwY3

Google Scholar

[18] H. Zhao, Z. Zheng, R. Tan, W. Liu, Z. Zhang, Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method. Applied Sciences. 14 (2024) 1–14.

DOI: 10.3390/app142310920

Google Scholar

[19] L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.

Google Scholar

[20] V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73

DOI: 10.1007/978-3-031-63720-9_6

Google Scholar

[21] Mah. Aftabi, K. Ahangari, Al. Naghi Dehghan, Investigating the Effect of Layering and Schistosity on the Mechanical Behavior of Rocks Using the Discrete Element Method. Rudarsko-Geološko-Naftni Zbornik. 1 (2023) 41–48.

DOI: 10.17794/rgn.2023.5.4

Google Scholar

[22] M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.

DOI: 10.1016/j.jmatprotec.2021.117378

Google Scholar

[23] V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128

DOI: 10.1007/978-3-031-16651-8_12

Google Scholar

[24] C. Aguilar, T. Aguirre, C. Martínez, F. De Barbieri, F. San Martín, V. Salinas, I. Alfonso, Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure. Materials and Design. 195 (2020) 1–13.

DOI: 10.1016/j.matdes.2020.108945

Google Scholar

[25] Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.

DOI: 10.1016/j.heliyon.2024.e24166

Google Scholar

[26] L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Modeling of Aerodynamic Systems, Discrete Element Method for Multiphase Flows with Biogenic Particles. 1 (2024) 19–63.

DOI: 10.1007/978-3-031-67729-8_3

Google Scholar

[27] I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51

DOI: 10.4028/www.scientific.net/msf.1038.51

Google Scholar

[28] Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.

DOI: 10.3390/mca29050090

Google Scholar

[29] A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499.

DOI: 10.4028/www.scientific.net/msf.1038.492

Google Scholar

[30] V. Venkatesh, R. Noraas, A. Pilchak, S. Tamirisa, K. Calvert, A. Salem, T. Broderick, M. Glavicic, I. Dempster, V. Saraf, Data driven tools and methods for microtexture classification and dwell fatigue life prediction in dual phase titanium alloys. Web of Conferences. 321 (2020) 1–8.

DOI: 10.1051/matecconf/202032111091

Google Scholar

[31] O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15-24.

DOI: 10.4028/www.scientific.net/msf.1038.15

Google Scholar

[32] M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.

DOI: 10.4279/pip.140015

Google Scholar

[33] Rob. Hesse, Fab. Krull, Ser. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology. 393 (2021) 559–581.

DOI: 10.1016/j.powtec.2021.07.056

Google Scholar

[34] V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562

DOI: 10.1016/j.ijsolstr.2023.112562

Google Scholar

[35] Sh. Balachandran, A. Tripathi, Ar. Banerjee, M. Chinara, R. Teja, S. Suresha, D. Choudhuri, R. Banerjee, D. Banerjee, Transformations, recrystallization, microtexture and plasticity in titanium alloys. Web of Conferences. 321 (2020) 1–13.

DOI: 10.1051/matecconf/202032111020

Google Scholar

[36] V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214

DOI: 10.4028/p-9jq543

Google Scholar

[37] D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.

DOI: 10.3390/math10234595

Google Scholar

[38] T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.

DOI: 10.1016/j.powtec.2022.118143

Google Scholar

[39] A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231–238

DOI: 10.4028/p-18k386

Google Scholar

[40] D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.

Google Scholar

[41] V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35. https://www.scientific.net/DDF.428.27

DOI: 10.4028/p-sx9ljy

Google Scholar

[42] H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics. 11 (2024) 689–703.

DOI: 10.1007/s40571-023-00647-1

Google Scholar

[43] V. Pasternak, A. Ruban, N. Zolotova, O. Suprun, Computer modeling of inhomogeneous media using the Abaqus software package. Defect and Diffusion Forum. 428 (2023) 47–56. https://www.scientific.net/DDF.428.47

DOI: 10.4028/p-xti7h9

Google Scholar

[44] Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166 (2021).

DOI: 10.15587/978-617-7319-43-5

Google Scholar

[45] V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods, Defect and Diffusion Forum. 428 (2023) 57–66.

DOI: 10.4028/p-5iwtnl

Google Scholar

[46] Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[47] Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences. 60 (2018) № 00003.

DOI: 10.1051/e3sconf/20186000003

Google Scholar