[1]
V. Pasternak, A. Ruban, O. Zemlianskyi, G. Ivanov, Using various methods of imaging and visualization for studying heterogeneous structures at micro- and nanoscales. Materials Science Forum. 1126 (2024) 131–141
DOI: 10.4028/p-85YY1q
Google Scholar
[2]
C. Chukwu, E. Bonyah, M. Juga, L. Fatmawati, On Mathematical Modeling of Fractional-Order Stochastic for Tuberculosis Transmission Dynamics. Results in Control and Optimization. 11 (2023) 1–17.
DOI: 10.1016/j.rico.2023.100238
Google Scholar
[3]
T. Zhang, D. Chen, H. Yang, W. Zhao, Y. Wang, H. Zhou, Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing, Polymers. 16 (2024) 1-12.
DOI: 10.3390/polym16091179
Google Scholar
[4]
V. Pasternak, A. Ruban, O. Holii, S. Vavreniuk, Mathematical model of the dynamics of spherical elements. Advances in Science and Technology. 156 (2024) 117–125
DOI: 10.4028/p-vqM060
Google Scholar
[5]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic Trisulfide-Doped Silica-Based Porous Glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[6]
Zah. Ghasemi Monfared, J. Gunnar I. Hellstrom, Ken. Umeki, The Impact of Discrete Element Method Parameters on Realistic Representation of Spherical Particles in a Packed Bed. Processes. 12 (2024) 1–17.
DOI: 10.3390/pr12010183
Google Scholar
[7]
T. Lu, T. He, Z. Li, H. Chen, X. Han, Z. Fu, W. Chen, Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles. Journal of Materials Research and Technology. 9 (2020) 1–19.
DOI: 10.1016/j.jmrt.2020.09.034
Google Scholar
[8]
V. Pasternak, A. Ruban, Y. Horbachenko, S. Vavreniuk, Computer modelling of the process of separation of heterogeneous elements (spheres). Advances in Science and Technology. 156 (2024) 127–136
DOI: 10.4028/p-5aAMEf
Google Scholar
[9]
Zh. Chenyang, L. Yanbo, M. Yiming, Wu. Songgu, G. Junbo, Optimization of Green Spherical Agglomeration Process Based on Response Surface Methodology for Preparation of High-Performance Spherical Particles. International Journal of Pharmaceutics. 662 (2022) 1–17.
DOI: 10.1016/j.ijpharm.2024.124515
Google Scholar
[10]
J. Burunkova, G. Alkhalil, A. Veniaminov, I. Csarnovics, S. Molnar, S. Kokenyesi, Arsenic trisulfide-doped silica-based porous glass. Optics and Laser Technology. 147 (2022) 1–7.
DOI: 10.1016/j.optlastec.2021.107658
Google Scholar
[11]
V. Pasternak, A. Ruban, O. Bilotil, D. Karpova, Effective application of numerical approaches and Green functions for the process of modelling spheres. Advances in Science and Technology. 156 (2024) 3–13
DOI: 10.4028/p-5KGuD9
Google Scholar
[12]
H. Wang, J. Li, G. Hu, B. Zhou, Y. Guo, Effect of Binder Coatings on the Fracture Behavior of Polymer-Crystal Composite Particles Using the Discrete Element Method. Coatings. 11 (2021) 1–15.
DOI: 10.3390/coatings11091075
Google Scholar
[13]
L. Ke, G. Dali, G. Zixi, Z. Yunxiang, Computer 3D Simulation of Proppant Particles. Applied Sciences. 1 (2024) 1–15.
Google Scholar
[14]
V. Pasternak, A. Ruban, O. Chernenko, O. Nadon, Use of the boundary element method for solving problems of predicting the regularities of formation of the structure of non-isometric components. Advances in Science and Technology. 156 (2024) 15–25
DOI: 10.4028/p-Xm5pzL
Google Scholar
[15]
Y. Huang, W. Sun, Q. Xie, H. You, K. Wu, Discrete Element Simulation of the Shear Behavior of Binary Mixtures Composed of Spherical and Cubic Particles. Applied Sciences. 13 (2023) 1–19.
DOI: 10.3390/app13169163
Google Scholar
[16]
L. Zhang, L. Guangfu, Mathematical Modeling for Ceramic Shape 3D Image Based on Deep Learning Algorithm, Advances in Mathematical Physics. 1 (2021) 1–10.
DOI: 10.1155/2021/4343255
Google Scholar
[17]
V. Pasternak, A. Ruban, K. Pasynchuk, P. Polyanskyi, Special features of using mathematical modeling for the study of tetrahedral elements. Advances in Science and Technology. 156 (2024) 27–37
DOI: 10.4028/p-DBbwY3
Google Scholar
[18]
H. Zhao, Z. Zheng, R. Tan, W. Liu, Z. Zhang, Modeling Shearing and Bending Behavior of Kiwifruit Branches Using the Discrete Element Method. Applied Sciences. 14 (2024) 1–14.
DOI: 10.3390/app142310920
Google Scholar
[19]
L. Musabekova, K. Arystanbayev, M. Jamankarayeva, M. Amandikov, Computer Simulation of Attractive Swarming Accompanied by Particles Aggregation in Dispersed Systems. Chemical Engineering Transactions. 94 (2022) 1021–1026.
Google Scholar
[20]
V. Pasternak, O. Zabolotnyi, D. Cagáňová, Y. Hulchuk, Investigation of cylindrical particles sphericity and roundness based on the extreme vertices model. Lecture Notes in Mechanical Engineering. (2024) 62–73
DOI: 10.1007/978-3-031-63720-9_6
Google Scholar
[21]
Mah. Aftabi, K. Ahangari, Al. Naghi Dehghan, Investigating the Effect of Layering and Schistosity on the Mechanical Behavior of Rocks Using the Discrete Element Method. Rudarsko-Geološko-Naftni Zbornik. 1 (2023) 41–48.
DOI: 10.17794/rgn.2023.5.4
Google Scholar
[22]
M. Brown, R. M'Saoubi, P. Crawforth, A. Mantle, J. McGourlay, H. Ghadbeigi, On deformation characterisation of machined surfaces and machining-induced white layers in a milled titanium alloy. Journal of Materials Processing Tech.. 299 (2022) 1–15.
DOI: 10.1016/j.jmatprotec.2021.117378
Google Scholar
[23]
V. Pasternak, O. Zabolotnyi, N. Zubovetska, D. Cagáňová, I. Pavlenko, Manufacturing of the T-207 prismatic part using additive manufacturing technologies. Lecture Notes in Mechanical Engineering. (2023) 119–128
DOI: 10.1007/978-3-031-16651-8_12
Google Scholar
[24]
C. Aguilar, T. Aguirre, C. Martínez, F. De Barbieri, F. San Martín, V. Salinas, I. Alfonso, Improving the mechanical strength of ternary beta titanium alloy (Ti-Ta-Sn) foams, using a bimodal microstructure. Materials and Design. 195 (2020) 1–13.
DOI: 10.1016/j.matdes.2020.108945
Google Scholar
[25]
Al. Al-Masri, K. Khanafer, K. Vafai, Multiscale Homogenization of Aluminum Honeycomb Structures: Thermal Analysis with Orthotropic Representative Volume Element and Finite Element Method. Heliyon. 10 (2024) 1–19.
DOI: 10.1016/j.heliyon.2024.e24166
Google Scholar
[26]
L. Zhou, M.A. Elemam, R.K. Agarwal, W. Shi, Modeling of Aerodynamic Systems, Discrete Element Method for Multiphase Flows with Biogenic Particles. 1 (2024) 19–63.
DOI: 10.1007/978-3-031-67729-8_3
Google Scholar
[27]
I. Ryshchenko, L. Lyashok, A. Vasilchenko, A. Ruban, L. Skatkov, Electrochemical synthesis of crystalline niobium oxide. Materials Science Forum. 1038 (2021) 51–60. https://www.scientific.net/MSF.1038.51
DOI: 10.4028/www.scientific.net/msf.1038.51
Google Scholar
[28]
Al. Povitsky, Modeling of Sedimentation of Particles near Corrugated Surfaces by the Meshless Method of Fundamental Solutions. Mathematical and Computational Applications. 29 (2024) 1–19.
DOI: 10.3390/mca29050090
Google Scholar
[29]
A. Vasilchenko, О. Danilin, Т. Lutsenko, А. Ruban, Features of evaluation of fire resistance of reinforced concrete ribbed slab under combined effect explosion-fire. Materials Science Forum. 1038 (2021) 492–499.
DOI: 10.4028/www.scientific.net/msf.1038.492
Google Scholar
[30]
V. Venkatesh, R. Noraas, A. Pilchak, S. Tamirisa, K. Calvert, A. Salem, T. Broderick, M. Glavicic, I. Dempster, V. Saraf, Data driven tools and methods for microtexture classification and dwell fatigue life prediction in dual phase titanium alloys. Web of Conferences. 321 (2020) 1–8.
DOI: 10.1051/matecconf/202032111091
Google Scholar
[31]
O. Kaglyak, B. Romanov, K. Romanova, A. Ruban, V. Shvedun, Repeatability of sheet material formation results and interchangeability of processing modes at multi-pass laser formation. Materials Science Forum. 1038 (2021) 15-24.
DOI: 10.4028/www.scientific.net/msf.1038.15
Google Scholar
[32]
M. Schroter, Ch. Lyv, Ji. Huang, K. Huang, Challenges of «Imaging» Particulate Materials in Three Dimensions. Papers in Physics. 14 (2022) 1–18.
DOI: 10.4279/pip.140015
Google Scholar
[33]
Rob. Hesse, Fab. Krull, Ser. Antonyuk, Prediction of Random Packing Density and Flowability for Non-Spherical Particles by Deep Convolutional Neural Networks and Discrete Element Method simulations. Powder Technology. 393 (2021) 559–581.
DOI: 10.1016/j.powtec.2021.07.056
Google Scholar
[34]
V. Pasternak, H. Sulym, I.M. Pasternak, Frequency domain Green's function and boundary integral equations for multifield materials and quasicrystals. International Journal of Solids and Structures. 286–287 (2024) 112562
DOI: 10.1016/j.ijsolstr.2023.112562
Google Scholar
[35]
Sh. Balachandran, A. Tripathi, Ar. Banerjee, M. Chinara, R. Teja, S. Suresha, D. Choudhuri, R. Banerjee, D. Banerjee, Transformations, recrystallization, microtexture and plasticity in titanium alloys. Web of Conferences. 321 (2020) 1–13.
DOI: 10.1051/matecconf/202032111020
Google Scholar
[36]
V. Pasternak, L. Samchuk, A. Ruban, O. Chernenko, N. Morkovska, Investigation of the main stages in modeling spherical particles of inhomogeneous materials. Materials Science Forum. 1068 (2022) 207–214
DOI: 10.4028/p-9jq543
Google Scholar
[37]
D. Xunbai, S. Dang, Y. Yuzheng, Ch. Yingbin, The Finite Element Method with High-Order Enrichment Functions for Elastodynamic Analysis. Mathematics. 10 (2022) 1–27.
DOI: 10.3390/math10234595
Google Scholar
[38]
T. Ueda, Reproducibility of the Repose Angle, Porosity, and Coordination Number of Particles Generated by Spherical Harmonic-Based Principal Component Analysis Using Discrete Element Simulation. Powder Technology. 415 (2023) 1–22.
DOI: 10.1016/j.powtec.2022.118143
Google Scholar
[39]
A. Ruban, V. Pasternak, N. Huliieva, Prediction of the structural properties of powder materials by 3D modeling methods. Materials Science Forum. 1068 (2022) 231–238
DOI: 10.4028/p-18k386
Google Scholar
[40]
D. Kobylkin, O. Zachko, V. Popovych, N. Burak, R. Golovatyi, C. Wolff, Models for changes management in infrastructure projects. CEUR Workshop Proceedings. 2565 (2020) 106–115.
Google Scholar
[41]
V. Pasternak, A. Ruban, M. Surianinov, S. Shapoval, Simulation modeling of an inhomogeneous medium, in particular: round, triangular, square shapes. Defect and Diffusion Forum. 428 (2023) 27–35. https://www.scientific.net/DDF.428.27
DOI: 10.4028/p-sx9ljy
Google Scholar
[42]
H.M. Lee, T.H. Kim, G.H. Yoon, Analysis of Cone-Shaped Projectile Behavior During Penetration into Granular Particles Using the Discrete Element Method. Computational Particle Mechanics. 11 (2024) 689–703.
DOI: 10.1007/s40571-023-00647-1
Google Scholar
[43]
V. Pasternak, A. Ruban, N. Zolotova, O. Suprun, Computer modeling of inhomogeneous media using the Abaqus software package. Defect and Diffusion Forum. 428 (2023) 47–56. https://www.scientific.net/DDF.428.47
DOI: 10.4028/p-xti7h9
Google Scholar
[44]
Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Y., Udianskyi, M., Koloskov, V., Danilin, A., Kovalov, P. Fire resistance of reinforced concrete and steel structures. Fire resistance of reinforced concrete and steel structures, 1–166 (2021).
DOI: 10.15587/978-617-7319-43-5
Google Scholar
[45]
V. Pasternak, A. Ruban, V. Shvedun, J. Veretennikova, Development of a 3d computer simulation model using C++ methods, Defect and Diffusion Forum. 428 (2023) 57–66.
DOI: 10.4028/p-5iwtnl
Google Scholar
[46]
Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., Suprun, O. Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies. 5(1 (119) (2022) 53–61.
DOI: 10.15587/1729-4061.2022.266219
Google Scholar
[47]
Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences. 60 (2018) № 00003.
DOI: 10.1051/e3sconf/20186000003
Google Scholar