Optimizing Mg-Pd-Ni Ternary Alloys for Hydrogen Storage: A Molecular Dynamics Study of Mechanical Durability

Article Preview

Abstract:

Hydrogen represents a promising clean energy carrier with exceptional gravimetric energy density (120 MJ/kg) [1]. Metal hydrides offer superior hydrogen storage through chemical absorption at interstitial sites, enabling performance optimization via alloy composition [2,3]. However, Mg-based hydrides, despite their high capacity, exhibit limitations including strong Mg-H bonding and sluggish kinetics, necessitating elevated dehydrogenation temperatures (600-700 K) [4,5]. Molecular dynamics (MD) simulations provide detailed atomistic insights into mechanical behavior under hydrogenation conditions [6]. This investigation employs MD to elucidate the effects of hydrogenation on the mechanical properties of Mg-Pd-Ni ternary alloys, aiming to identify compositions with enhanced structural durability for practical hydrogen storage applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1171)

Pages:

51-56

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.R. Usman, Hydrogen storage methods: Review and current status, Renew. Sustain. Energy Rev. 167 (2022) 112743.

Google Scholar

[2] R.R. Shahi, A.K. Gupta, P. Kumari, Perspectives of high entropy alloys as hydrogen storage materials, Int. J. Hydrogen Energy (in press).

Google Scholar

[3] J. Barale, J.R. Ares, P. Rizzi, M. Baricco, J.F. Fernandez Rios, High pressure hydrogen compression exploiting Ti₁.₁(Cr,Mn,V)₂ and Ti₁.₁(Cr,Mn,V,Fe)₂ alloys, J. Alloys Compd. 947 (2023) 169497.

DOI: 10.1016/j.jallcom.2023.169497

Google Scholar

[4] J.-C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Review of magnesium hydride-based materials: development and optimisation, Appl. Phys. A 122 (2016) 97.

DOI: 10.1007/s00339-016-9602-0

Google Scholar

[5] S. Guemou, F. Wu, P. Chen, J. Zheng, T. Bian, D. Shang, A.P. Levutsev, L. Zhang, Graphene-anchored Ni₆MnO₈ nanoparticles with steady catalytic action to accelerate the hydrogen storage kinetics of MgH₂, Int. J. Hydrogen Energy (in press).

DOI: 10.1016/j.ijhydene.2023.03.243

Google Scholar

[6] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271 (2022) 108171.

DOI: 10.1016/j.cpc.2021.108171

Google Scholar

[7] X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (2004) 144113.

DOI: 10.1103/physrevb.69.144113

Google Scholar

[8] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.

DOI: 10.1021/ja00051a040

Google Scholar

[9] P.S. Patwardhan, R.A. Nalavde, D. Kujawski, An estimation of Ramberg–Osgood constants for materials with and without Luder's strain using yield and ultimate strengths, Procedia Struct. Integr. 17 (2019) 750–757.

DOI: 10.1016/j.prostr.2019.08.100

Google Scholar

[10] F. Cuevas, J.F. Fernández, J.R. Ares, F. Leardini, C. Sánchez, Homogeneity range and crystal structure of Ni substituted Mg₆(Pd,Ni) complex intermetallic compounds, J. Phys. Chem. Solids 71 (2010) 1259–1263.

DOI: 10.1016/j.jpcs.2010.05.004

Google Scholar

[11] J. Yin, K. Tanaka, Hydriding-dehydriding properties of Mg-rich Mg–Ni–Nd alloys with refined microstructures, Mater. Trans. 43 (2002) 1732–1736.

DOI: 10.2320/matertrans.43.1732

Google Scholar

[12] A. Safaei, Cohesive energy and physical properties of nanocrystals, Philos. Mag. 91 (2011) 1509–1539.

Google Scholar

[13] N. Takeichi, K. Tanaka, H. Tanaka, T.T. Ueda, M. Tsukahara, H. Miyamura, S. Kikuchi, Hydrogen storage properties and corresponding phase transformations of Mg/Pd laminate composites prepared by a repetitive-rolling method, Mater. Trans. 48 (2007) 2395–2398.

DOI: 10.2320/matertrans.maw200726

Google Scholar

[14] S. Yamaura, H. Kimura, A. Inoue, Structure and properties of melt-spun Mg–Pd binary alloys, Mater. Trans. 44 (2003) 1895–1898.

DOI: 10.2320/matertrans.44.1895

Google Scholar

[15] G.E. Abrosimova, A.S. Aronin, Free volume in amorphous alloys and its change under external influences, J. Surf. Investig. X-ray Synchrotron Neutron Tech. 17 (2023) 934–941.

DOI: 10.1134/s1027451023040201

Google Scholar

[16] G.E. Abrosimova, A.S. Aronin, Free volume in amorphous alloys and its change under external influences, J. Surf. Investig. X-ray Synchrotron Neutron Tech. 17 (2023) 934–941.

DOI: 10.1134/s1027451023040201

Google Scholar