[1]
M.R. Usman, Hydrogen storage methods: Review and current status, Renew. Sustain. Energy Rev. 167 (2022) 112743.
Google Scholar
[2]
R.R. Shahi, A.K. Gupta, P. Kumari, Perspectives of high entropy alloys as hydrogen storage materials, Int. J. Hydrogen Energy (in press).
Google Scholar
[3]
J. Barale, J.R. Ares, P. Rizzi, M. Baricco, J.F. Fernandez Rios, High pressure hydrogen compression exploiting Ti₁.₁(Cr,Mn,V)₂ and Ti₁.₁(Cr,Mn,V,Fe)₂ alloys, J. Alloys Compd. 947 (2023) 169497.
DOI: 10.1016/j.jallcom.2023.169497
Google Scholar
[4]
J.-C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, T.R. Jensen, P. de Jongh, M. Latroche, C. Milanese, D. Milčius, G.S. Walker, C.J. Webb, C. Zlotea, V.A. Yartys, Review of magnesium hydride-based materials: development and optimisation, Appl. Phys. A 122 (2016) 97.
DOI: 10.1007/s00339-016-9602-0
Google Scholar
[5]
S. Guemou, F. Wu, P. Chen, J. Zheng, T. Bian, D. Shang, A.P. Levutsev, L. Zhang, Graphene-anchored Ni₆MnO₈ nanoparticles with steady catalytic action to accelerate the hydrogen storage kinetics of MgH₂, Int. J. Hydrogen Energy (in press).
DOI: 10.1016/j.ijhydene.2023.03.243
Google Scholar
[6]
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271 (2022) 108171.
DOI: 10.1016/j.cpc.2021.108171
Google Scholar
[7]
X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69 (2004) 144113.
DOI: 10.1103/physrevb.69.144113
Google Scholar
[8]
A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.
DOI: 10.1021/ja00051a040
Google Scholar
[9]
P.S. Patwardhan, R.A. Nalavde, D. Kujawski, An estimation of Ramberg–Osgood constants for materials with and without Luder's strain using yield and ultimate strengths, Procedia Struct. Integr. 17 (2019) 750–757.
DOI: 10.1016/j.prostr.2019.08.100
Google Scholar
[10]
F. Cuevas, J.F. Fernández, J.R. Ares, F. Leardini, C. Sánchez, Homogeneity range and crystal structure of Ni substituted Mg₆(Pd,Ni) complex intermetallic compounds, J. Phys. Chem. Solids 71 (2010) 1259–1263.
DOI: 10.1016/j.jpcs.2010.05.004
Google Scholar
[11]
J. Yin, K. Tanaka, Hydriding-dehydriding properties of Mg-rich Mg–Ni–Nd alloys with refined microstructures, Mater. Trans. 43 (2002) 1732–1736.
DOI: 10.2320/matertrans.43.1732
Google Scholar
[12]
A. Safaei, Cohesive energy and physical properties of nanocrystals, Philos. Mag. 91 (2011) 1509–1539.
Google Scholar
[13]
N. Takeichi, K. Tanaka, H. Tanaka, T.T. Ueda, M. Tsukahara, H. Miyamura, S. Kikuchi, Hydrogen storage properties and corresponding phase transformations of Mg/Pd laminate composites prepared by a repetitive-rolling method, Mater. Trans. 48 (2007) 2395–2398.
DOI: 10.2320/matertrans.maw200726
Google Scholar
[14]
S. Yamaura, H. Kimura, A. Inoue, Structure and properties of melt-spun Mg–Pd binary alloys, Mater. Trans. 44 (2003) 1895–1898.
DOI: 10.2320/matertrans.44.1895
Google Scholar
[15]
G.E. Abrosimova, A.S. Aronin, Free volume in amorphous alloys and its change under external influences, J. Surf. Investig. X-ray Synchrotron Neutron Tech. 17 (2023) 934–941.
DOI: 10.1134/s1027451023040201
Google Scholar
[16]
G.E. Abrosimova, A.S. Aronin, Free volume in amorphous alloys and its change under external influences, J. Surf. Investig. X-ray Synchrotron Neutron Tech. 17 (2023) 934–941.
DOI: 10.1134/s1027451023040201
Google Scholar