Anisotropic Mechanical Property-Induced Ductilization (AMID) – A New Mechanism to Simultaneously Improve the Strength and Ductility of Multiphase Alloys

Article Preview

Abstract:

We recently proposed a new mechanism to simultaneously improve the strength and ductility of multiphase alloys, named “Anisotropic mechanical property-induced ductilization (AMID)”. In this paper, the variations in tensile deformation behavior of Mg/LPSO extruded alloys depending on the volume fraction of the LPSO phase were examined, to deepen the understanding on AMID. As expected, the work-hardening rate of the Mg/LPSO two-phase extruded alloy increased as increasing in the volume fraction of LPSO phase. This demonstrates the validity of the AMID mechanism. However, the increase in the volume fraction of the LPSO phase decreased the elongation, even though the work-hardening rate was increased in them. The present study revealed that an appropriate amount of Mg grains is necessary to obtain the effect of AMID in improving the uniform elongation of the alloy, by the suppressing the development of microcracks formed in the LPSO phase grains into macroscopic fracture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1175)

Pages:

13-18

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Mater. Trans. 42 (2001) 1172-1176.

DOI: 10.2320/matertrans.42.1172

Google Scholar

[2] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater. 58 (2010) 6282-6293.

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[3] M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy, Acta Mater. 59 (2011) 3646-3658.

DOI: 10.1016/j.actamat.2011.02.038

Google Scholar

[4] E. Oñorbe, G. Garcés, F. Dobes, P. Pérez, P. Adeva, High-temperature mechanical behavior of extruded Mg-Y-Zn alloy containing LPSO phases, Metall. Mater. Trans. A 44 (2013) 2869-2883.

DOI: 10.1007/s11661-013-1628-8

Google Scholar

[5] K. Hagihara, A. Kinoshita, Y. Fukusumi, M. Yamasaki, Y. Kawamura, High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase, Mater. Sci. Eng. A 560 (2013) 71-79.

DOI: 10.1016/j.msea.2012.09.016

Google Scholar

[6] G. Garces, P. Perez, S. Cabeza, H. K. Lin, S. Kim, W. Gan, P. Adeva, Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases, Mater. Sci. Eng. A 647 (2015) 287-293.

DOI: 10.1016/j.msea.2015.09.003

Google Scholar

[7] J. K. Kim, S. Sandlöbes, D. Raabe, On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures, Acta Mater. 82 (2015) 414-423.

DOI: 10.1016/j.actamat.2014.09.036

Google Scholar

[8] K. Hagihara, T. Mayama, M. Yamasaki, S. Harjo, T. Tokunaga, K. Yamamoto, M. Sugita, K. Aoyama, W. Gong, S. Nishimoto, Contributions of multimodal microstructure in the deformation behavior of extruded Mg alloys containing LPSO phase, Int. J. Plasticity 173 (2024) 103865.

DOI: 10.1016/j.ijplas.2023.103865

Google Scholar

[9] K. Hagihara, T. Okamoto, M. Yamasaki, Y. Kawamura, T. Nakano, Electron backscatter diffraction pattern analysis of the deformation band formed in the Mg-based long-period stacking ordered phase, Scripta Mater. 117 (2016) 32-36.

DOI: 10.1016/j.scriptamat.2016.02.016

Google Scholar

[10] K. Hagihara, M. Honnami, R. Matsumoto, Y. Fukusumi, H. Izuno, M. Yamasaki, T. Okamoto, T. Nakano, Y. Kawamura, In-situ observation on the formation behavior of the deformation kink bands in Zn single crystal and LPSO phase, Mater. Trans. 56 (2015) 943-951.

DOI: 10.2320/matertrans.mh201412

Google Scholar

[11] K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys, Acta Mater. 163 (2019) 226-239.

DOI: 10.1016/j.actamat.2018.10.016

Google Scholar

[12] M. Tane, S. Suzuki, M. Yamasaki, Y. Kawamura, K. Hagihara, H. Kimizuka, Insignificant elastic-modulus mismatch and stress partitioning in two-phase Mg–Zn–Y alloys comprised of α-Mg and long-period stacking ordered phases, Mater. Sci. Eng. A 710 (2018) 227-239.

DOI: 10.1016/j.msea.2017.10.069

Google Scholar

[13] K. Hagihara, T. Mayama, M. Yamasaki, T. Tokunaga, M. Sugita, S. Nishimoto, K. Yamamoto, K. Umemura, Simultaneous achievement of high strength and large elongation in extruded Mg/LPSO alloys via the anisotropic mechanical property-induced ductilization (AMID) mechanism, Jour. Magnesium Alloys 13 (2025) 2049-2071.

DOI: 10.1016/j.jma.2025.03.003

Google Scholar

[14] I. S. Yasnikov, A. Vinogradov, Y. Estrin, Revisiting the Considére criterion from the viewpoint of dislocation theory fundamentals, Scripta Mater. 76 (2014) 37–40.

DOI: 10.1016/j.scriptamat.2013.12.009

Google Scholar