Densification and Mechanical Property of Nanostructured NiAl Produced by Mechanical-Alloying and Spark-Plasma Sintering

Abstract:

Article Preview

Mechanically-alloyed NiAl powder was sintered by Spark-Plasma Sintering (SPS) process. Densification behavior and mechanical property were determined. Above 97% relative density was obtained after sintering at 1150oC for 5min. Crystallite size determined by the Scherrer method was approximately 80 nm. TEM observation revealed a relative larger crystallite size. X-ray diffraction analysis showed that the sintered bodies were composed mainly of NiAl phase together with Ni3Al phase. Sintered NiAl body showed an average Vicker’s hardness of 555Hv, transverse-rupture strength of 1393MPa, 4-point-bending strength of 1100MPa, and fracture toughness of 19.9MPa m-1/2

Info:

Periodical:

Materials Science Forum (Volumes 449-452)

Edited by:

S.-G. Kang and T. Kobayashi

Pages:

1101-1104

Citation:

J. S. Kim et al., "Densification and Mechanical Property of Nanostructured NiAl Produced by Mechanical-Alloying and Spark-Plasma Sintering", Materials Science Forum, Vols. 449-452, pp. 1101-1104, 2004

Online since:

March 2004

Export:

Price:

$38.00

[1] K. Enami and S. Nenno: Metall. Trans., 2 (1971), pp.1487-1490.

[2] Y. D. Kim and C. M. Wayman: Script. Metall., 24 (1990), pp.245-250.

[3] U. D. Hangen and G. Sauthoff: Intermetallics, 7 (1999), pp.501-510.

[4] Y. K. Au and C. M. Wayman: Scipt. Metall., 6 (1972), pp.1209-1214.

[5] J. L. Smialek and R. F. Hehemann: Metall. Trans., 4 (1973), pp.1571-1575.

[6] P. Kimura, S. Kobaysi: J. Metals and Materials Japan, 58 (1994), p.201.

[7] Y. H. Park and T. Y. Eam: J. Japan Soc. of Powder and Powder Metallurgy, 44 (1997), p.530.

[8] M. Omori, H. Sakai, A. Okubo, M. Kawahara, M. Tokita and T. Hirai: Proceedings of the 3rd International Symposium on Structural and Functionally Gradient Materials, Lausanne, Switzerland, 1994, pp.99-104.

[9] M. Omori, H. Sakai, A. Okubo, M. Kawahara, M. Tokita and T. Hirai: Symposium of Materials Research Society, Japan , (1994).

[10] G. A. Weissler: Resistance Sintering with Alumina Dies, Int’l. J. of Powder Metallurgy & Powder Technology, 17 (1981), p.107.

[11] Y. Goto, M. Sasaki, K. Mukaida, M. Omori, A. Okubo, T. Hirai and T. Nagano: J. Japan Soc. of Powder and Powder Metallurgy, 45 (1998), p.1061.

DOI: https://doi.org/10.2497/jjspm.45.1061

[12] N. Tamari, T. Tanaka, K. Tanaka, I. Kondo, M. Kawahara and M. Tokita: J. Ceramic Soc. Japan 103 (1995), p.740.

[13] M. Omori, A. Okubo and T. Hirai: Proc. of 1993 Powder Metallurgy Wold Congress, Kyoto, Japan, (1993), p.935.

[14] J.S. Kim, S.H. Jung, Y.I. Jang, and Y.S. Kwon: J. of Korean Powder Metallurgy Institute, 10 (2003) pp.172-175.

[15] R. D. Noebe, A. Misra and R. Givala: ISIJ int’l., 31 (1991), p.1177.

[16] F. Ebrahimi and S. Shrivastava: Acta Mater., 46 (1998) p.1496.

[17] F. Ebrahimi and T. G. Hoyle: Acta Mater., 45 (1997) p.4195.

[18] J. Q. Su, M. Demura and T. Hirano: Acta Mater., 51 (2003) p.2508.