Dynamic Recrystallization and Grain Growth in a ZK60 Magnesium Alloy Sheet Produced by Isothermal Rolling

Abstract:

Article Preview

A ZK60 magnesium alloy was subjected to isothermal rolling (IR) at 275 and 300°C. This processing resulted in grain refinement through dynamic recrystallization (DRX) at both temperatures. The recrystallized volume fractions of 82 and 95% and average sizes of fine grains of 2.5 and 3.7 µm were achieved after IR at 275 and 300°C, respectively. It was shown that the ultrafine-grained structure produced by DRX at 300°C exhibited higher stability under following static and dynamic annealing than that produced at 275°C. This fact was attributed with the formation of a less constrained DRX structure at higher temperature of IR. As a result, the sheet produced from the ZK60 alloy at 300°C showed superior superplastic properties. Conversely, it was not feasible to enhance the superplastic properties in the ultrafine-grained alloy produced at 275°C because significant grain growth occurred during further processing of the as-rolled alloy.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

1175-1180

Citation:

A. Galiyev and R. Kaibyshev, "Dynamic Recrystallization and Grain Growth in a ZK60 Magnesium Alloy Sheet Produced by Isothermal Rolling", Materials Science Forum, Vols. 467-470, pp. 1175-1180, 2004

Online since:

October 2004

Export:

Price:

$38.00

[1] J. Goken, J. Bohlen, N. Hort, D. Letzig and K.U. Kainer: Mater. Sci. Forum Vol. 426-432 (2003), p.153.

[2] S. Schumann and H. Friedrich: Mater. Sci. Forum Vol. 419-422 (2003), p.51.

[3] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes and T.G. Langdon: Acta Mater. Vol. 48 (2000), p.3633.

[4] J.C. Tan and M.J. Tan: Scripta Mater. Vol. 47 (2002), p.101.

[5] T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa and K. Higashi: Mater. Sci. Eng. Vol. A290 (2000), p.139.

[6] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi: Scripta Mater. Vol. 36 (1997), p.681.

[7] M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi: Mater. Sci. Technol. Vol. 13 (1997), p.825.

[8] K. Matsubara, Y. Miyahara, Z. Horita and T.G. Langdon: Acta Mater. Vol. 51 (2003), p.3073.

[9] H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi and K. Higashi: Mater. Sci. Eng. Vol. A307 (2001), p.119.

[10] H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi: Mater. Sci. Forum Vol. 419-422 (2003), p.557.

[11] J. Pilling and N. Ridley: Superplasticity in Crystalline Solids (The Institute of Metals, London 1989).

[12] A. Galiyev, R. Kaibyshev and G. Gottstein: Acta Mater. Vol. 49 (2001), p.1199.

[13] O. Kaibyshev: Superplasticity of Alloys, Intermetallides, and Ceramics (Springer Verlag, Berlin 1992).