Dynamic Recrystallization of Dense Polycrystalline NaCl: Dependence of Grain Size Distribution on Stress and Temperature

Abstract:

Article Preview

Only few models explain the development of a steady state grain size during dynamic recrystallization, and their microphysical basis is poorly understood. In this study, we investigate mechanical and microstructural data on dry and wet NaCl, deformed at a range of stresses and temperatures at elevated pressure, with the aim to evaluate the different models. The results show that dry NaCl continuously work hardens and shows evidence for recrystallization dominated by progressive subgrain rotation, while the wet material shows, at similar conditions, oscillating stressstrain behaviour and recrystallization dominated by grain boundary migration. Taking into account the distribution of grain size, deformation of wet NaCl is best described by flow laws based on composite grain size sensitive (GSS) solution-precipitation creep and grain size insensitive (GSI) dislocation creep. The recrystallized grain size data in wet NaCl can be modeled with the hypothesis that recrystallized grain size organises itself in the boundary between the GSS and GSS creep domains.

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Edited by:

B. Bacroix, J.H. Driver, R. Le Gall, Cl. Maurice, R. Penelle, H. Réglé and L. Tabourot

Pages:

1187-1192

DOI:

10.4028/www.scientific.net/MSF.467-470.1187

Citation:

J.H. ter Heege et al., "Dynamic Recrystallization of Dense Polycrystalline NaCl: Dependence of Grain Size Distribution on Stress and Temperature", Materials Science Forum, Vols. 467-470, pp. 1187-1192, 2004

Online since:

October 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.