Recrystallization in Deformed and Heat Treated PET Polymer Sheets

Article Preview

Abstract:

This is a study on texture, decrystallization, and recrystallization in rolled and heat treated semi–crystalline polymers. Experiments were conducted using wide angle Debye-Scherrer-type X– ray diffraction. Changes in crystallinity were quantitatively monitored as a function of strain and annealing time. It was observed that crystallinity drastically drops during deformation in PET. We suggest that amorphization (decrystallization) is a deformation mechanism which acts as an alternative to crystallographic slip depending on the orientation of the nanocrystalline lamellae. Heat treatment leads to the recrystallization of amorphous PET material and to an enhancement of the original texture of the deformed crystals observed before the heat treatment. We explain this phenomenon in terms of oriented nucleation where amorphous material crystallizes alongside existing crystalline lamellae.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

551-556

Citation:

Online since:

October 2004

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Asano, T., Balta Calleja, F. J., Flores, A., Tanigaki, M., Mina, M. F., Sawatari, C., Itagaki, H., Takahashi, H. & Hatta, I., Polymer 40 (1999) 6475.

DOI: 10.1016/s0032-3861(98)00839-8

Google Scholar

[2] Bedia, E., Murakami, S., Kitade, T. & Kohjiya, S. Polymer 42 (2001) 7299.

Google Scholar

[3] Bellare, A., Cohen, R. E. & Argon, A. S., Polymer 34 (1993) 1393.

Google Scholar

[4] Göschel, U., Deutscher, K. & Abetz V., Polymer 37 (1996) 1.

Google Scholar

[5] Encyclopedia of Polymer Science and Engineering. 2nd edition New York: Wiley, (1985).

Google Scholar

[6] Helming, K., Schwarzer, R. A., Rauschenbach, B., Geier, S., Leiss, B., Wenk, H. R., Ullemeier, K. & Heinitz, J., Z. Metallkunde 85 (1994) 545.

Google Scholar

[7] Haudin JM, in B. Escaig and C. G'Sell (eds. ), Plastic Deformation of Amorphous and SemiCrystalline Materials, Les Editions de Physique, Les Ulis, 1982, page 291.

Google Scholar

[8] Lotz B. & Wittmann J. C., Structure of Polymer Single Crystals, in: Structure and Properties of Polymers, 1993, Vol. ed. E.L. Thomas, Vol. 12 of Materials Science and Technology, ed. by R. W. Cahn, P. Haasen, E. J. Kramer, page 79.

Google Scholar

[9] Crist, B., Plastic Deformation of Polymers, in: Structure and Properties of Polymers, 1993, Vol. ed. E.L. Thomas, Vol. 12 of Materials Science and Technology, ed. by R. W. Cahn, P. Haasen, E. J. Kramer, Chapter 10, page 427.

Google Scholar

[10] Crist, B., Semicrystalline Polymers: Plastic Deformation, in: Encyclopedia of Materials: Science and Technology, Volume 9, K. H. J. Buschow et al., eds., Elsevier, New York, 2001, page 8427.

DOI: 10.1016/b0-08-043152-6/01506-0

Google Scholar

[11] Lee, B. J., Argon, A. S., Parks, D. M., Ahzi, S. & Bartczak, Z., Polymer 34 (1993) 3555.

Google Scholar

[12] Bellare, A., Cohen, R. E. & Argon, A. S., Polymer 34 (1993) 1393.

Google Scholar

[13] Bartczak, Z., Argon, A. S. & Cohen, R. E., Polymer 35 (1994) 3427.

Google Scholar