Grain Boundary Roughening Transition

Article Preview

Abstract:

Flat surfaces and grain boundaries lying on low crystal planes are singular corresponding to the cusps in the polar (Wulff) plots of their energy against their orientation. The theoretical analysis of the entropy effect at high temperatures shows that these interfaces undergo roughening transitions. The molecular dynamics simulations also show disordering to liquid-like structures at high temperatures that can be interpreted as the roughening transition. Experimentally, singular flat surfaces and grain boundaries become curved at high temperatures or with additives, indicating their roughening transition. The grain boundaries in polycrystals are often faceted with hill-and-valley shapes and their defaceting at high temperatures also show their roughening transition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

825-834

Citation:

Online since:

October 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.K. Burton and N. Cabrera: Dis. Faraday Soc. Vol. 5 (1949), p.33.

Google Scholar

[2] W.K. Burton, N. Cabrera and F.C. Frank: Phil. Trans. R. Soc., London, Sect. A Vol. 243 (1951), p.299.

Google Scholar

[3] F.C. Frank, in Metal Surfaces: Structure, Energetics, and Kinetics, edited by W.D. Robertson and N.A. Gjostein (American Society for Metals, Metals Park, OH 1963), p.1.

Google Scholar

[4] J.D. Weeks and G.H. Gilmer, in Advances in Chemical Physics, Vol. 40, edited by I. Prigogine and S.A. Rice (Wiley, NY 1979), p.157.

Google Scholar

[5] J.D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Riste (Plenum, New York 1980), p.293.

DOI: 10.1007/978-1-4684-3626-6

Google Scholar

[6] H. van Beijeren and I. Nolden, in Structure and Dynamics of Surfaces II: Phenomena, Models, and Method, edited by W. Schommers and P. von Blanckenhagen (Springer-Verlag, Berlin 1987), p.259.

Google Scholar

[7] M. Wortis, in Chemistry and Physics of Solid Surfaces VII, edited by R. Banselow and R.F. Howe (Springer-Verlag, Berlin 1987), p.367.

Google Scholar

[8] E.H. Conrad: Prog. Surf. Sci. Vol. 39 (1992), p.65.

Google Scholar

[9] J.E. Avron, L.S. Balfour, C.G. Kuper, J. Landau, S.G. Lipson and L.S. Schulman: Phys. Rev. Lett. Vol. 45 (1980), p.814.

Google Scholar

[10] S. Balibar and B. Castaing: J. Phys. Lett. Vol. 41 (1980), p. L-32.

Google Scholar

[11] K.O. Keshishev, A.Y. Parshin and A.V. Babkin: Zh. Eksp. Teor. Fiz. Vol. 80 (1981), p.716. (Sov. Phys. JETP Vol. 53 (1981), p.362).

Google Scholar

[12] P.E. Wolf, F. Gallet, S. Balibar, E. Rolley and P. Nozières: J. Physique Vol. 46 (1985), p. (1987).

Google Scholar

[13] J.C. Heyraud and J J. Mètois: J. Cryst. Growth Vol. 84 (1987), p.503.

Google Scholar

[14] J.C. Heyraud and J.J. Mètois: J. Cryst. Growth Vol. 50 (1980), p.571.

Google Scholar

[15] J.C. Heyraud and J.J. Mètois: Acta Metall. Vol. 28 (1980), p.1789.

Google Scholar

[16] J.C. Heyraud and J.J. Mètois: Surf. Sci. Vol. 128 (1983), p.334.

Google Scholar

[17] C. Rottman, M. Wortis, J.C. Heyraud and J.J. Mètois: Phys. Rev. Lett. Vol. 52 (1984), p.1009.

Google Scholar

[18] T. Ohachi and I. Taniguchi: J. Cryst. Grwoth Vol. 65 (1983), p.84.

Google Scholar

[19] Pavlovska and D. Nenow: Surf. Sci. Vol. 27 (1971), p.211.

Google Scholar

[20] Pavlovska and D. Nenow: J. Cryst. Growth Vol. 12 (1972), p.9.

Google Scholar

[21] Pavlovska and D. Nenow, J. Cryst. Growth Vol. 39 (1977), p.346.

Google Scholar

[22] C. Rottman and M. Wortis: Phys. Rep. Vol. 103 (1984), p.59.

Google Scholar

[23] C. Rottman and M. Wortis: Phys. Rev. B, Vol. 29 (1984), p.328.

Google Scholar

[24] Y. Saito: Statistical Physics of Crystal Growth (World Scientific Publishing Co., Singapore 1996).

Google Scholar

[25] S. Sarian and H. W. Weart: Trans. Metall. Soc. AIME Vol. 233 (1965), p. (1990).

Google Scholar

[26] Y.K. Cho, D.Y. Yoon and B. -K. Kim: J. Am. Ceram Soc. (in press).

Google Scholar

[27] M. -K. Kang, J. -K. Park, D. -Y. Kim and N. -M. Hwang: Mater. Lett. Vol. 45 (2000), p.43.

Google Scholar

[28] K. -S. Oh, J. -Y. Jun and D. -Y. Kim: J. Am. Ceram. Soc. Vol. 83 (2000), p.3117.

Google Scholar

[29] H. Moon, B. -K. Kim and S. -J. L. Kang: Acta Mater. Vol. 49 (2001), p.1293.

Google Scholar

[30] K. Choi, N.M. Hwang D. -Y Yoon: J. Am. Ceram. Soc. Vol. 85 (2002), p.2313.

Google Scholar

[31] J.M. Howe: Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of SolidVapor, Solid-Liquid and Solid-Solid Interfaces (John Wiley & Sons, Inc., New York 1997).

Google Scholar

[32] L. Onsager: Phys. Rev. Vol. 65 (1944), p.117.

Google Scholar

[33] S.T. Chui and J.K. Weeks: Phys. Rev. B Vol. 14 (1972), p.4978.

Google Scholar

[34] J.M. Kosterlitz and D.J. Thouless: J. Phys. C Vol. 6 (1973), p.1181.

Google Scholar

[35] H.J. Leamy and G.H. Gilmer: J. Cryst. Growth Vol. 24/25 (1974), p.499.

Google Scholar

[36] H. van Beijeren: Phys. Rev. Lett. Vol. 38 (1977), p.993.

Google Scholar

[37] T.J. Whalen and M. Humenik, Jr.: Trans. Metall. Soc. AIME Vol. 218 (1960), p.401.

Google Scholar

[38] J.H. Choi: Effect of Carbon on the Grain Growth Behavior in TaC-Ni, M.S. Thesis, KAIST, Korea, (1997).

Google Scholar

[39] K.B. Alexander, F.K. LeGoues, H.I. Aaronson and D.E. Laughlin: Acta Metall. Vol. 32 (1984), p.2241.

Google Scholar

[40] P. Lours, K.H. Westmacott and U. Dahmen, in Structure and Properties of Interfaces in Materials, Materials Research Society Symposium Proceedings, Vol. 238, edited by W.A.T. Clark, U. Dahmen, and C.L. Briant (Materials Research Society, Pittsburgh, PA 1992), p.207.

Google Scholar

[41] J.Q. Broughton and G.H. Gilmer: J. Chem. Phys. Vol. 79 (1983), p.5119.

Google Scholar

[42] J.Q. Broughton and G.H. Gilmer: J. Phys. Chem. Vol. 91 (1987), p.6347.

Google Scholar

[43] J.Q. Broughton and G.H. Gilmer: J. Chem. Phys. Vol. 79 (1983), p.5105.

Google Scholar

[44] V. Pontikis and V. Rosato: Sur. Sci. Vol. 162 (1985), p.150.

Google Scholar

[45] V. Rosato, G. Ciccotti and V. Pontikis: Phys. Rev. B Vol. 33 (1986), p.1860.

Google Scholar

[46] D. Gorse, J. Lapujoulade and V. Pontikis: Sur. Sci. Vol. 178 (1986), p.434.

Google Scholar

[47] H. Häkkinen and M. Manninen: Phys. Rev. B Vol. 46 (1992), p.1725.

Google Scholar

[48] H. Ichinose and Y. Ishida: J. Phys. Vol. 46 (1985), p. C-4-39.

Google Scholar

[49] K.L. Merkle and D. Wolf: Phil. Mag. A Vol. 65 (1992), p.513.

Google Scholar

[50] F. Cosandey and C. L. Bauer: Acta Metall. Vol. 28 (1980), p.601.

Google Scholar

[51] C.B. Carter: Acta Metall. Vol. 36 (1988), p.2753.

Google Scholar

[52] K.J. Morrissey and C.B. Carter: J. Am. Ceram. Soc. Vol. 67 (1984), p.292.

Google Scholar

[53] C.B. Carter and K.J. Morrissey: Adv. Ceram. Vol. 12 (1984), p.303.

Google Scholar

[54] D.W. Susnitzky and C.B. Carter: J. Am. Ceram. Soc. Vol. 73 (1990), p.2485.

Google Scholar

[55] M.A. Gülgün, V. Putlayev and M. Rühle: J. Am. Ceram. Soc. Vol. 82 (1999), p.1849.

Google Scholar

[56] C.W. Park, D.Y. Yoon, J.E. Blendell and C.A. Handwerker: J. Am. Ceram. Soc. Vol. 83 (2003), p.603.

Google Scholar

[57] K.L. Merkle: Ultramicroscopy Vol. 22 (1987), p.57.

Google Scholar

[58] T. Yamamoto, Y. Ikuhara, K. Hayashi and T. Sakuma: J. Mater. Res. Vol. 13 (1998), p.3449.

Google Scholar

[59] T. Yamamoto, Y. Ikuhara, K. Hayashi and T. Sakuma: Mater. Sci. Forum Vol. 294-296 (1999), p.247.

Google Scholar

[60] S.B. Lee, S. -Y. Choi and D.Y. Yoon: Z. Metallkd. Vol. 94 (2003), p.193.

Google Scholar

[61] S.B. Lee, W. Sigle and M. Rühle: Acta Mater. Vol. 50 (2002), p.2151.

Google Scholar

[62] Y.K. Cho and D.Y. Yoon: J. Am. Ceram. Soc. (in press).

Google Scholar

[63] J. -M. Penisson: J. Phys. Vol. 49 (1988), p. C-5-87.

Google Scholar

[64] A.V. Andrejeva, G.I. Salnikov and L.K. Fionova: Acta Metall. Vol. 26 (1978), p.1331.

Google Scholar

[65] G. Henry, J. Plateau, X. Wache, M. Gerber, I. Behar and C. Crussard: Mem. Sci. Rev. Metall. Vol. 56 (1959), p.417.

Google Scholar

[66] S.B. Lee, N.M. Hwang, D.Y. Yoon and M.F. Henry: Metall. Mater. Trans. A Vol. 31 (2000), p.985.

Google Scholar

[67] G.D. Sukhomlin and A. V. Andreeva: Phys. Stat. Sol. A Vol. 78 (1983), p.333.

Google Scholar

[68] J.S. Choi and D.Y. Yoon: ISIJ International Vol. 41 (2001), p.478.

Google Scholar

[69] S. -H. Lee, J.S. Choi and D. Y. Yoon: Z. Metallkd. Vol. 92 (2001), p.655.

Google Scholar

[70] G.H. Bishop, W.H. Hart and G.A. Bruggeman: Acta Metall. Vol. 19 (1971), p.37.

Google Scholar

[71] W.H. Hartt, G. H. Bishop and G. A. Bruggeman: Acta Metall. Vol. 22 (1974), p.971.

Google Scholar

[72] B. -K. Lee, S. -Y. Chung and S. -J.L. Kang: Acta Mater. Vol. 48 (2000), p.1575.

Google Scholar

[73] Y.K. Cho, S. -J.L. Kang and D.Y. Yoon: J. Am. Ceram. Soc. Vol. 87 (2004), p.119.

Google Scholar

[74] C. Herring: Phys. Rev. Vol. 82 (1951), p.87.

Google Scholar

[75] S.B. Lee, D.Y. Yoon and M.F. Henry: Acta Mater. Vol. 48 (2000), p.3071.

Google Scholar

[76] Y.S. Yoo, D.Y. Yoon and M.F. Henry: Met. and Mater. Vol. 1 (1995), p.47.

Google Scholar

[77] D.M. Saylor, B.S. El-Dasher, Y. Pang, H.M. Miller, P. Wynblatt, A.D. Rollett and G.S. Rohrer: J. Amer. Ceram. Soc. (in press).

Google Scholar

[78] D.M. Saylor, A. Morawiec and G.S. Rohrer: Acta Mater. Vol. 51 (2003), p.3675.

Google Scholar

[79] D.M. Saylor, A. Morawiec and G.S. Rohrer: Acta Mater. Vol. 51 (2003), p.3663.

Google Scholar

[80] D.M. Saylor, B.S. El-Dasher, T. Sano and G.S. Rohrer: J. Amer. Ceram. Soc. (in press).

Google Scholar

[81] D.M. Saylor, B.L. Adams and G.S. Rohrer: Metall. Mater. Trans. (in press).

Google Scholar

[82] J.F. Lutsko, D. Wolf, S. Yip, S.R. Phillpot and T. Nguyen: Phys. Rev. B Vol. 38 (1988), p.11572.

Google Scholar

[83] D. Wolf and K.L. Merkle, in Materials Interfaces: Atomic-level Structure and Properties, edited by D. Wolf and S. Yip (Chapman & Hall, London 1992), p.87.

Google Scholar

[84] K.L. Merkle and D. Wolf: MRS Bulletin Vol. 15 (1990), p.42.

Google Scholar

[85] C. Rottman: Phys. Rev. Lett. Vol. 57 (1986), p.735.

Google Scholar

[86] V. Vitek, Y. Minonish and G. -J. Wang: J. Phys. Colloq. Vol. 46 (1985), p. C4-243.

Google Scholar

[87] V. Vitek, A.P. Sutton, G. -J. Wang and D. Schwartz: Scripta Metall. Vol. 17 (1983), p.183.

Google Scholar

[88] Y. Oh and V. Vitek: Acta Metall. Vol. 34 (1986), p. (1941).

Google Scholar

[89] G. -J. Wang, A.P. Sutton and V. Vitek: Acta Metall. Vol. 32 (1984), p.1093.

Google Scholar

[90] C. Rottman: Scripta Metall. Vol. 23 (1989), p.1037.

Google Scholar

[91] V. Pontikis: J. Phys. Vol. 10 (1988), p. C-5-327.

Google Scholar

[92] S.T. Chui and J.D. Weeks: Phys. Rev. B Vol. 14 (1976), p.4978.

Google Scholar

[93] J.M. Kosterlitz: Solid State Phys. Vol. 10 (1977), p.3753.

Google Scholar

[94] M. -C. Desjonquères and D. Spanjaard: Concepts in Surface Physics, 2nd ed. (Springer-Verlag, Berlin, Heidelberg 1996).

Google Scholar

[95] D.Y. Yoon and Y.K. Cho: Inter. Sci. (in press).

Google Scholar

[96] T.E. Hsieh and R.W. Balluffi: Acta Metall. Vol. 37 (1989), p.2133.

Google Scholar

[97] T.G. Ference and R.W. Balluffi: Scripta Metall. Vol. 22 (1988), p. (1929).

Google Scholar

[98] K.H. Westmacott and D. Dahmen, in Interface: Structure and Properties, edited by S. Ranganathan, C.S. Pande, B.B. Rath and D.A. Smith (Trans Tech Publications, Switzerland 1993), p.133.

Google Scholar

[99] J.B. Koo and D.Y. Yoon: Metall. Mater. Trans. A Vol. 32 (2001), p.469.

Google Scholar

[100] C.W. Park and D.Y. Yoon: J. Am. Ceram. Soc. Vol. 83 (2000), p.2605.

Google Scholar