Microstructural Evolution and Micro-Texture in Zr-2.5Nb Tubes

Abstract:

Article Preview

Both small experimental extruded tubes and full-size pressure tubes were examined using scanning electron microscope/electron backscattered diffraction (SEM/EBSD) and transmission electron microscope/selected area diffraction (TEM/SAD). The final microstructures and textures vary with billet microstructure, extrusion temperature and extrusion ratio. Three components in {0002} pole figures were determined. The first component (radial) is produced by a and c+a slip in a-grains during extrusion. The second component (transverse) is associated with the elongated a- grains with their c-axes parallel to their long dimension. The third component (axial) is produced by b-a phase transformation after extrusion with a preferred variant of the Burgers relationship.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

1421-1424

Citation:

P. Zhao and R.A. Holt, "Microstructural Evolution and Micro-Texture in Zr-2.5Nb Tubes", Materials Science Forum, Vols. 475-479, pp. 1421-1424, 2005

Online since:

January 2005

Authors:

Export:

Price:

$38.00

[1] Rogerson. J. Nuclear Mater. Vol. 159 (1988), p.43.

[2] R.A. Holt, A.R. Causey, M. Griffiths and E.T.C. Ho: Zirconium in the Nuclear Industry: Twelfth Symposium. ASTM 2000, p.86.

[3] B.A. Cheadle, S.A. Aldridge and C.E. Ells. J. Nuclear Mater. Vol. 34 (1970), p.119.

[4] R.A. Holt and S.A. Aldridge. J. Nuclear Mater. Vol. 135 (1985), p.246.

[5] N. Gey, E. Gautier, M. Hunbert, A. Cerqueira, J.L. Bechade and P. Archambault. J. Nuclear Mater. Vol. 302 (2002), p.175.

[6] H. -R. Wenk, I. Lonardeli and D. Williams. Acta Mater. Vol. 52 (2004), p.1899.

[7] R. Choubey, S.A. Aldridge, J.R. Theaker, C.D. Cann and C.E. Coleman: Zirconium in Nuclear Industry: Eleventh Symposium. ASTM, 1996, p.657.

DOI: https://doi.org/10.1520/stp16195s

[8] R.A. Holt and P. Zhao, accepted for publication in J. Nulclear Mat., (2004).

[9] M. Griffiths, C.K. Chow, C.E. Coleman, R.A. Holt, S. Sagat and V.F. Urbanic: Proc. 16th International Symposium on Effects of Radiation on Materials. ASTM STP 1175 (1993), p.1077.

[10] M. Griffiths, R.A. Holt, J. Li and S. Saimoto. Microstructural Science, ASM International, Vol. 26 (1999), p.293. 0.

02.

04.

06.

08.

1.

12.

14 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angle, ° Fraction 0.

05.

1.

15.

2.

25.

3.

35.

4.

45.

5 90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angle, ° Fraction 0.

05.

1.

15.

2.

25 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angle, ° Fraction 0.

05.

1.

15.

2.

25.

3.

35.

4.

45.

5 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angle, ° Fraction (b) (a) (c) (d).