Blue and White Organic Light-Emitting Devices Using 2,5-Diphenyl -1, 4-Distyrylbenzene with Two Trans-Double Bonds as a Blue Emitting Layer

Abstract:

Article Preview

A novel derivative of oligo(phenylenvinylene) (OPV), 2,5-diphenyl -1, 4-distyrylbenzene with two trans-double bonds (trans-DPDSB), is used as a blue emitting material in blue and white organic light-emitting devices (OLEDs). Blue devices with a configuration of indium-tin oxide (ITO)/N,N´-diphenyl-N,N´-bis(1-naphthyl)-(1,1´-biphenyl)-4,4´-diamine (NPB)/ trans-DPDSB / tris (8-hydroxyquinoline) aluminum (Alq3)/LiF/Al are constructed, where NPB, Alq3 and trans-DPDSB are used as hole-transporting, electron-transporting and light-emitting layers, respectively. The color of emission is changed from blue-green to pure blue when the trans-DPDSB layer is thicker. By inserting an ultrathin 5,6,11,12-tetraphenylnaphthacene (rubrene) yellow light-emitting layer between the Alq3 and trans-DPDSB layers, white OLEDs are obtained. The maximum efficiency and luminance of the blue and white devices are 1.2, 3.0 cd/A, and 1400, 7000 cd/m2, respectively.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

1805-1808

Citation:

G. Cheng et al., "Blue and White Organic Light-Emitting Devices Using 2,5-Diphenyl -1, 4-Distyrylbenzene with Two Trans-Double Bonds as a Blue Emitting Layer", Materials Science Forum, Vols. 475-479, pp. 1805-1808, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] J. R. Sheat, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman and A. Stocking: Science Vol. 273 (1996), p.884.

DOI: https://doi.org/10.1126/science.273.5277.884

[2] B. W. D'Andrade, M. E. Thompson and S. R. Forrest: Adv. Mater Vol. 14 (2002), p.147.

[3] Z. Y. Xie, J. S. Huang, C. N. Li, S. Y. Liu, Y. Wang, Y. Q. Li and J. C. Shen: Appl. Phys. Lett. Vol. 74 (1999), p.641.

[4] K. Yang, W. Gao, J. Zhao, J . Sun, S. Lu and S. Liu: Synth. Met. Vol. 132 (2002), p.43.

[5] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma and S. T. Lee: Appl. Phys. Lett. Vol. 82 (2003), p.4224.

[6] B. W. D' Andrade and S. R. Forrest: J. Appl. Phys. Vol. 94 (2003), p.3101.

[7] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma and J. Shen: Appl. Phys. Lett. Vol. 83 (2003), p.4716.

[8] T. Tsuji, S. Naka, H. Okada and H. Onnagawa: Appl. Phys. Lett. Vol. 81 (2002), p.3329.

[9] W. Xie, S. Liu and Y. Zhao: J. Phys. D: Appl. Phys. Vol. 36 (2003), p.1246.

[10] W. Xie, Z. Wu, S. Liu and S. T. Lee: J. Phys. D: Appl. Phys. Vol. 36 (2003), p.2331.

[11] G. Cheng, Y. Zhao, Y. F. Zhang, S. Y. Liu, F. He, H. Q. Zhang and Y. G. Ma: Appl. Phys. Lett. Vol. 84 (2004), p.4457.

[12] R. H. Burroughes, D. D. C. Bradly, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes: Nature Vol. 347 (1990), p.539.