Magnetic Field-Induced Strain of Martensite and Parent Phases in a Ferromagnetic Shape Memory Iron-Palladium Alloy

Article Preview

Abstract:

We have investigated the magnetic field-induced strain (MFIS) of the martensite and the parent phases in an Fe-31.2Pd(at.%) single crystal, which exhibits a martensitic transformation at TM = 230K. Below TM, a large MFIS of several percent appears due to rearrangement of martensite variants and this strain remains when a magnetic field is removed. Such rearrangement depends on magnetic field direction; Variants are perfectly rearranged into the variant, which lowers the magnetocrystalline anisotropy energy most, when a magnetic field is applied along [001]P, and partially when [011]P and hardly when [111]P (“P” represents “parent” phase). The dependence on the field direction can be explained by comparing the magnetic shear stress tmag with the shear stress t req required for rearrangement of variants. Above the temperature, TM, a relatively large MFIS appears and it increases up to about 10-3 with decreasing temperature from 280 K toward TM. This MFIS is probably caused by anomalies of some physical properties, such as elastic constant and dipole-dipole interaction coefficient in the parent phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

1999-2004

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley and V. V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[2] T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima and S. Muto: Appl. Phys. Lett. Vol. 77 (2000), p.1502.

DOI: 10.1063/1.1290694

Google Scholar

[3] T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio: J. Appl. Phys. Vol. 93 (2003), p.8647.

Google Scholar

[4] K. Ullakko, J. K. Huang, V. V. Kokorin and R. C. O'Handley: Scr. Mater. Vol. 36 (1997), p.1133.

Google Scholar

[5] R. D. James and M. Wuttig: Philos. Mag. A Vol. 77 (1998), p.1273.

Google Scholar

[6] R. C. O'Handley: J. Appl. Phys. Vol. 83 (1998), p.3263.

Google Scholar

[7] V. A. L'lov, E. V. Gomonaj and V. A. Chernenko: J. Phys.: Condens. Matter Vol. 10 (1998), p.4587.

Google Scholar

[8] R. D. James , R. Tickle and M. Wuttig: Mater. Sci. Eng. Vol. A273-275 (1999), p.320.

Google Scholar

[9] A. A. Likhachev and K. Ullakko: Phys. Lett. A Vol. 275 (2000) p.142.

Google Scholar

[10] P. Müllner, V. A. Chernenko, M. Wollgarten and G. Kostorz: J. Appl. Phys. Vol. 92 (2002), p.6708.

Google Scholar

[11] O. Heczko, L. Straka, N. Lanska, K. Ullakko and J. Enkovaara: J. Appl. Phys. Vol. 91 (2002), p.8228.

DOI: 10.1063/1.1453944

Google Scholar

[12] A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[13] J. Koeda, Y. Nakamura. T. Fukuda. T. Kakeshita. T. Takeuchi and K. Kohji: Trans. Mater. Res. Soc. Japan Vol. 26.

Google Scholar

[1] (2001), p.215.

Google Scholar

[14] M. Sugiyama, R. Oshima and F. E. Fujita: Trans. JIM Vol. 25 (1984), p.585.

Google Scholar

[15] S. Muto, R. Oshima and F.E. Fujita: Acta Metall. Mater. Vol. 38 (1990), p.685.

Google Scholar

[16] F. Arae, H. Arimune, F. Ono and O. Yamada: J. Phys. Soc. Jpn. Vol. 54 (1985), p.3098.

Google Scholar

[17] L. Néel: J. Phys. Radium Vol. 15 (1954), p.225.

Google Scholar