Microstructure Evolution of a Zn-4wt.% Cu Hyperperitectic Alloy under Laser Surface Remelting

Article Preview

Abstract:

Laser surface remelting experiments on Zn-4.0wt.%Cu hyperperitectic alloy have been performed on a 5kW CW CO2 laser with the scanning velocities between 6 and 1207mm/s. Microstructures in both longitudinal and transverse section of the molten pools have been analyzed by optical microscope and SEM technique, and the average composition in the molten pools has been measured by Electron Probe Microanalysis(EPMA). With the increasing of growth rate, the microstructures of Zn-4.0 wt.%Cu alloy change from planar interface to lamellar structures and then cellular structures, and finally to absolute stability planar interface at a growth rate of 562mm/s, which shows reasonable agreement with that predicted by M-S theory.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

2611-2614

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chalmers: Physical metallurgy (Wiley, New York 1959).

Google Scholar

[2] W. J. Boettinger. Metall Trans. Vol. 5 (1974), p. (2023).

Google Scholar

[3] J. H. Lee, J. D. Verhoeven. J Crystal Growth. Vol. 144 (1994), p.353.

Google Scholar

[4] P. Busse and F. Meissen. Scripta Mater. Vol. 36 (1997), p.653.

Google Scholar

[5] M. Vandyoussefi, H.W. Kerr, and W. Kurz. Acta Mater. Vol. 48 (2000), p.2297.

Google Scholar

[6] S. Yang, W. D. Huang, W. J. Liu, Y. P. Su and Y. H. Zhou. Chinese Journal of Lasers. Vol. A29 (2002), p.476.

Google Scholar

[7] M. Rappaz et al. Helvetica Phys. Acta. Vol. 60 (1987), p.924.

Google Scholar

[8] W.A. Tiller, K.A. Jackson, J.W. Rutter and B. Chalmers. Acta Metal. Vol. 1 (1953), p.428 Fig. 4 SEM micrograph of a cell-free microstructure morphology at a solidified velocity of 562mm/s.

Google Scholar

[9] J. H. Perepezko and W. J. Boettinger. in Alloy Phase Diagrams, L. H. Bennett, T. B. Massalski and B. C. Giessen, eds., Mat. Res. Soc. Symp. Proc. 19, Elsevier North Holland, NY, (1983) 223.

Google Scholar

[10] Yongchang Liu, Gencang Yang and Yaohe Zhou. Crystal Growth. Vol. 240 (2002), p.603.

Google Scholar

[11] K.A. Jackson, J.D. Hunt, Transactions of the Metallurgical Society of AIME, (1966) 236.

Google Scholar

[12] Xin Lin, Yanmin Li, Zhengxia Liu, Tao Li and Weidong Huang. Science and Technology of Advanced Materials. Vol. 2 (2001), p.293.

Google Scholar

[13] W. W. Mullins, R. F. Sekerka. J. Appl. Phys. Vol. 35 (1964), p.444.

Google Scholar