Developing High Strain Rate Superplasticity in Aluminum Alloys

Abstract:

Article Preview

The conventional materials used in superplastic forming operations generally have grain sizes of ~2 µm or larger and they exhibit superplasticity at relatively low strain rates. Processing by equal-channel angular pressing (ECAP) produces materials having ultrafine-grain sizes, usually in the submicrometer range. If these ultrafine grains show reasonable stability at elevated temperatures, the alloys may exhibit a capability for achieving superplastic elongations at high strain rates. This paper examines the development of ultrafine-grained structures and superplastic ductilities in a spray-cast aluminum 7034 alloys through ECAP. The results show that ECAP is a very effective procedure for achieving grain refinement and superplasticity at rapid strain rates.

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Main Theme:

Edited by:

Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han and X.S. Xie

Pages:

2949-2954

DOI:

10.4028/www.scientific.net/MSF.475-479.2949

Citation:

C. Xu et al., "Developing High Strain Rate Superplasticity in Aluminum Alloys", Materials Science Forum, Vols. 475-479, pp. 2949-2954, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.