Cu-Zr-Ti Bulk Metallic Glass Composites Produced by Mechanical Alloying and Vacuum Hot-Pressing

Article Preview

Abstract:

In the present study, WC/Cu60Zr30Ti10 metallic glass composite powders were prepared by mechanical alloying of pure Cu, Zr, Ti, and WC powder mixtures. Cu60Zr30Ti10 metallic glass composite powders were obtained after 5 h of milling as confirmed by X-ray diffraction and differential scanning calorimetry. The metallic glass composites powders were found to exhibit a supercooled liquid region before crystallization. Bulk metallic glass (BMG) composites were synthesized by vacuum hot pressing the as-milled Cu60Zr30Ti10 metallic glass composite powders at 723 K in the pressure range of 0.72-1.20 GPa. BMG composite with submicron WC particles homogeneously embedded in a highly dense anocrystalline/amorphous matrix was successfully prepared under applied pressure of 1.20 GPa. It was found that the pressure could enhance the thermal stability and promotes nocrystallization of WC/Cu60Zr30Ti10 BMG composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

3443-3450

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Zhang, T. Yamamoto, A. Inoue and T. Zhang: Mater. Trans., JIM Vol. 43 (2002), p.3222.

Google Scholar

[2] C. Li, J. Saida, M. Matsushida and A. Inoue: Scripta Mater. Vol. 40 (2000), p.923.

Google Scholar

[3] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: J. Non-Crys. Solids. Vol. 304 (2002), p.200.

Google Scholar

[4] H. Kato and A. Inoue: Mater. Trans., JIM Vol. 38 (1997), p.793.

Google Scholar

[5] R. D. Conner, H. Choi-Yim and W. L. Johnson: J. Mater. Res. Vol. 14 (1999), p.3292.

Google Scholar

[6] C. Fan, D. V. D. Louzguine, C. Li and A. Inoue: Appl. Phys. Lett. Vol. 75 (1999), p.340.

Google Scholar

[7] J. Eckert, A. Kubler and L. Schultz: J. Appl. Phys. Vol. 85 (1999), p.7112.

Google Scholar

[8] B. Weiss and J. Eckert: J. Meta. Nano-Crys. Mater. Vol. 8 (2000), p.129.

Google Scholar

[9] C. K. Lin, S. W. Liu and P. Y. Lee: Metal Mater. Trans. A Vol. 32A (2001), p.1777.

Google Scholar

[10] C. K. Lin, Y. B. Feng, P. Y. Lee, L. Y. Wang, H. M. Lin and G. S. Chen: Inter. Vol. 10 (2002), p.1149.

Google Scholar

[11] W. H. Wang, D. W. He, D. Q. Zhao and Y. S. Yao: Appl. Phys. Lett. Vol. 75 (1999), p.2770.

Google Scholar

[12] W. H. Wang: J. Meta. Nano-Crys. Mater. Vol. 15/16 (2003), p.73.

Google Scholar

[13] J. Z. Jiang, Y. X. Zhuang, J. Saida and A. Inoue: Phys. Rev. B Vol. 64 (2001), p.094208.

Google Scholar

[14] J. Z. Jiang, J. S. Olsen, L. Gerward, S. Abdali, J. Eckert, N. Schlorke-de Boer, L. Schultz, J. Truckenbrodt and P. X. Shi: J. Appl. Phys. Vol. 87 (2000), p.2664.

DOI: 10.1063/1.372237

Google Scholar

[15] X. J. Gu, H. J. Jin, H. W. Zhang, J. Q. Wang and K. Lu: Scripta Mater. Vol. 45 (2001), p.1091.

Google Scholar

[16] J. Zhang, K. Q. Qiu, A. M. Wang, H. F. Zhang, M. X. Quan and Z. Q. Hu: J. Mater. Res. Vol. 17(2002), p.2935.

Google Scholar