Glass Forming Ability in Amorphous Ti50Cu35-xNi15Snx Alloys Prepared by Mechanical Alloying

Article Preview

Abstract:

in the present study, amorphous ti50cu35-xni15snx (x=0~7) alloy powders were synthesized by mechanical alloying technique. the amorphization behavior of ti50cu28ni15sn7 alloy powders was examined in details by scanning electron microscopy, differential scanning calorimeter, x-ray diffraction, and synchrotron x-ray absorption spectroscopy. the results show that fully amorphous powders formed after 7 hours of milling. The thermal stability of the Ti50Cu35-xNi15Snx amorphous powders was investigated by differential scanning calorimeter. The amorphous Ti50Cu35Ni15 powders (i.e., x=0) exhibit no glass transition behavior. However, the amorphous Ti50Cu35-xNi15Snx (x=3~7) powders were found to exhibit a supercooled liquid region before crystallization. Amorphous Ti50Cu28Ni15Sn7 alloy powders exhibits a wide supercooled liquid region of 61 K.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

3451-3458

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue, Acta. Mater. Vol. 48 (2000), p.279.

Google Scholar

[2] T. Zhang, A. Inoue and T. Masumoto: Mater. Sci. Eng. Vol. A181/A182 (1994), p.1423.

Google Scholar

[3] A. Inoue, N. Nishiyama and T. Masumoto: Mater. Lett. Vol. 19 (1994), p.131.

Google Scholar

[4] K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto: Mater. Sci. Eng. Vol. A179/A180 (1994), p.692.

Google Scholar

[5] T. Zhang and A. Inoue: Mater. Trans. JIM Vol. 39 (1998), p.1001.

Google Scholar

[6] Y. C. Kim, S. Yi, W. T. Kim and D. H. Kim: Materials Science Forum Vol. 360-362 (2001), p.67.

Google Scholar

[7] I. K. Jeng, P. Y. Lee, J. S. Chen, R. R. Jeng, C. H. Yeh and C. K. Lin: Inter. Vol. 10 (2002), p.1271.

Google Scholar

[8] W. L. Johnson: Prog. Mater. Sci. Vol. 30 (1986), p.81.

Google Scholar

[9] J. Eckert: Mater. Sci. Forum Vol. 312-314 (1999), p.3.

Google Scholar

[10] C. K. Lin, S. W. Liu and P. Y. Lee: Metal Mater. Trans. Vol. 32A (2001), p.1777.

Google Scholar

[11] C. K. Lin, P. Y. Lee, J. L. Yang, C. Y. Tung, N. F. Cheng and Y. Hwu: J. Non-Crys. Solids Vol. 232-234 (1998), p.520.

Google Scholar

[12] P. Y. Lee and C.C. Koch: J. Non-Cryst. Solids Vol. 94 (1987), p.88.

Google Scholar

[13] M. S. El-Eskandarany, K. Aoki and K. Suzuki: J. Appl. Phys. Vol. 72 (1992), p.2665.

Google Scholar

[14] P. Y. Lee and C. C. Koch: J. Mater. Sci. Vol. 23 (1988), p.2837.

Google Scholar

[15] C. K. Lin, Y. B. Feng, P. Y. Lee, L. Y. Wang, H. M. Lin and G.S. Chen: Inter. Vol. 10 (2002), p.1149.

Google Scholar

[16] A. W. Weeber and H. Bakker: Phys. B Vol. 153 (1988), p.93.

Google Scholar

[17] T. Nasu, M. Sakurai, K. Suzuki, C.C. Koch, A.M. Edwards and D.E. Sayers: J. Non-Crys. Solids Vol. 205-207 (1996), p.527.

DOI: 10.1016/s0022-3093(96)00270-0

Google Scholar

[18] A. Inoue, T. Zhang and T. Masumoto: J. Non-Cryst. Solids Vol. 156-158 (1993), p.473.

Google Scholar