Raman Scattering and Photoluminescence Studies of Zn1-xMnxO Nanowires via Vapor Phase Growth

Article Preview

Abstract:

In this paper, we investigated the Raman scattering and photoluminescence of Zn1-xMnxO nanowires synthesized by the vapor phase growth. The changes of E2(High) and A1(LO) phonon frequency in Raman spectra indicate that the tensile stress increases while the free carrier concentration decreases with the increase of manganese. The Raman spectra exited by the different lasers exhibit the quantum confinement effect of Zn1-xMnxO nanowires. The photoluminescence spectra reveal that the near band emission is affected by the content of manganese obviously. The values of IUV/G decrease distinctly with the manganese increase also demonstrate that more stress introduced with the more substitution of Mn for Zn.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

3525-3530

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hee Chang Jeon, Youn Seok Jeong, Tae Won Kang, Tae Whan Kim, Kwang Jo Chung, Wonho Jhe and Seahn Song: Adv. Mater. 14 (2002), p.1725.

DOI: 10.1109/mbe.2002.1037737

Google Scholar

[2] Sanjay Mathur, Hao Shen, Nicolas Lecerf, Arne Kjekshus, Helmer Fjellvag and Gerardo F. Goya: Adv. Mater. 14 (2002), p.1405.

Google Scholar

[3] H. Ikada, T. Saito, N. Takahashi, K. Shibata, T. Sato, Z. Chen, I. Souma and Y. Oka: Physica E. 10 (2001), p.373.

Google Scholar

[4] W. Zaets, K. Watanabe and K. Ando: Appl. Phys. Lett. 70 (2000), pp.2508-2. 02. 42. 83. 2 10 3 10 4 10 5 10 6 10 7 x=0 x=0. 06 x=0. 13 Energy (eV) Intensity.

Google Scholar

[5] K. Ando and H. Saito, Zhengwu Jin and T. Fukumura: Appl. Phys. Lett. 89 (2001), p.7284.

Google Scholar

[6] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science. 287 (2000), p.1019.

Google Scholar

[7] Jian, Z., Buscher, H., Falter, W., Zhang, K. and Xie, X., J.: Applied Letters. 69 (1996), p.200.

Google Scholar

[8] A. M. Rao, E. Ritcher, Shunji Bandow, Bruce Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswanmy, M. Menon, A. Thess, R. E. Smalley, G. Dressclhaus and M. S. Dresselhaus: Science. 275 (1997), p.187.

DOI: 10.1126/science.275.5297.187

Google Scholar

[9] Fujii, Y. Kanzawa, S. Hayashi and K. Yamamoto: Phys. Rev. B. 54 (1996), p. R8373.

Google Scholar

[10] Canham L T, Appl. Phys. Lett., 57 (1990), p.1.

Google Scholar

[11] Y. Q. Chang, D. B. Wang, J. Xu, X. H. Luo, X. Y. Xu, C. P. Chen, R. M. Wang and D. P. Yu: Applied Physics Letter, 83 (2003), p.4020.

Google Scholar

[12] Z.C. Zhang, B.B. Huang, Y.Q. Yu and D.L. Cui: Mater. Sci. Eng. B. 86 (2001), p.109.

Google Scholar

[13] J. M. Calleja and M. Cardona: Phys. Rev. B. 16 (1977), p.3753.

Google Scholar

[14] T. C. Damen, S. P. S. Porto and B. Tell: Phys. Rev. 142 (1966), p.570.

Google Scholar

[15] F. Decremps, J. P. Porres, J. C. Chervin and A. Polian: Phys. Rev. B. 65 (2002), p.092101.

Google Scholar

[16] Yanqiu Huang, Meidong Liu, Zhen Li, Yike Zeng and Shaobo Liu: Materials Science and Engineering B. 97 (2003), p.111.

Google Scholar

[17] J. P. Han, P. Q. Mantas, and A. M. R. Senos: J. European ceramic Society. 21 (2001), p.1883.

Google Scholar

[18] Y. B. Li, a Y. Bando, T. Sato and K. Kurashima: Appl. Phys. Lett. 81 (2002), p.144.

Google Scholar

[19] Seung Chul Lyu, Ye Zhang, Hyun Ruh, Hwack-Joo Lee, Hyun-WookShim, Eun-Kyung Suh and Cheol Jin Lee: Chemical Physics Letters. 363 (2002), p.134.

Google Scholar

[20] Wong E. M. and Searcon P. C.: Appl. Phys. Lett. 74 (1999), p.2939.

Google Scholar

[21] Lin Guo, Yang S.H. and Yang C. L.: Appl. Phys. Lett. 76 (2001), p.2901.

Google Scholar