Preparation of Nanocrystalline NiAl Compounds and Composites by Mechanical Alloying

Article Preview

Abstract:

During the past ten years, mechanical alloying/ball milling has been employed to successfully synthesize nanocrystalline NiAl intermetallic compounds (NiAl, NiAl (Cr,Co,Ti,Fe)) and composites (NiAl-TiC, NiAl-TiB2, NiAl-HfC, NiAl-HfB2) in our group, namely, by means of self-sustained reaction. During the mechanical alloying process, an abrupt temperature rise has been observed. The large heat release from the formation of NiAl, as well as HfC, HfB2, TiC, TiB2 compounds is suggested to be the driven force of the self-sustained reaction. It is interested to observe that nanocrystalline NiAl exhibits very well microstructure stability during high temperature annealing. The alloying additions can decrease reaction rate and prolong the reaction time. With the increase of alloying additions, supersaturated solid solution even amorphization of NiAl has been formed. The nanocrystalline NiAl compounds show a rise of the compressive strength and the ductility at room temperature compared with that of the cast coarse crystalline compound.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

749-754

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.R. Miracle: Acta Metall. Mater Vol. 41 (1993), p.649.

Google Scholar

[2] R.D. Noebe, R.R. Bowman: International Materials Reviews Vol. 38(4) (1993), p.193.

Google Scholar

[3] J.T. Guo, C.Y. Cui: Intermetallics Vol. 9(4) (2001), p.287.

Google Scholar

[4] J.D. Whittenberge, S.V. Raj: Intermetallics Vol. 7 (1999), p.1159.

Google Scholar

[5] S.V. Raj, I.E. Locci: Intermetallics Vol. 9 (2001), p.217.

Google Scholar

[6] Karch J: Nature Vol. 330 (1987), p.556.

Google Scholar

[7] E.M. Schulson: Res. Mech. Letter Vol. 1 (1981), p.111.

Google Scholar

[8] E.M. Schulson and D.R. Barker: Scripta metal Vol. 17 (9183), p.519.

Google Scholar

[9] J.B. Benjamin: Sci. Am Vol. 40 (1976), p.234.

Google Scholar

[10] A.W. Weeber and H. Bakker: Physica B Vol 93 (1988), p.153.

Google Scholar

[11] F. Petzoldt: Mater. Sci. Eng Vol. 25 (1988), p.97.

Google Scholar

[12] F. Li, K.N. Ishihara and P.H. Shingu: Metall Transaction Vol. 22A (1991), p.2849.

Google Scholar

[13] C. Suryanarayana and S. Sundareson: Mater. Sci. Eng Vol. A131 (1991), p.237.

Google Scholar

[14] C.C. Koch: Nanostruct. Mater Vol. 2 (1993), p.109.

Google Scholar

[15] C.C. Koch and Y.S. Cho: Nanostruct. Mater Vol. 1 (1992), p.207.

Google Scholar

[16] S.N. Patanker, S.Q. Xiao, J.J. Lewandowski and A.H. Heuler: J. Mater. Res Vol. 8 (1993), p.1311.

Google Scholar

[17] Z.G. Liu, J.T. Guo, L.L. He, Z.Q. Hu: Nanostructured Materials Vol. 4(7) (1994), p.787.

Google Scholar

[18] T. Itzukaichi, S. Ohara, M. Umemoto and I. Okane: J. Mater. Sci Vol 2(1994), p.1481.

Google Scholar

[19] Z.G. Liu, J.T. Guo and Z.Q. Hu: Mater. Sci. Eng Vol. A192/193 (1995), p.577.

Google Scholar

[20] H. Gleiter: Prog. Mater. Sci Vol. 33 (1989), p.223.

Google Scholar

[21] K. Lu: Mater. Sci. Eng Vol. R16 (1996), p.161.

Google Scholar

[22] L.Z. Zhou, J.T. Guo: Scripta Materialia Vol. 40(2)(1999), p.139.

Google Scholar

[23] X.Y. Yang, L. L He, J. T Guo, H.Q. Ye: Acta Metallurica Sinica Vol. 36 (2000), p.907.

Google Scholar

[23] G.R. Haff and E.M. Schulson: Metall Trans Vol. 13A (1982), p.1563.

Google Scholar

[24] M. Hasaka, T. Morimura, Y. Uchiyama, S. Kondo: Scripta Metall. Mater Vol. 29 (1993), p.167.

Google Scholar

[25] S.C. Deevi: J. Mater. sci Vol. 26 (1911), p.3343.

Google Scholar

[26] M. Atzrnon: Phys. Rev. Lett Vol. 64 (1990), p.487.

Google Scholar

[27] Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li, Z.Q. Hu: Appl. Phys. Lett Vol. 65 (1994), p.2666.

Google Scholar