Certified Reference Materials for the Characterisation of Multifunctional Materials

Article Preview

Abstract:

Multifunctional materials are created by intimately integrating different materials. The assessment of the local properties and composition of the different components of such a multifunctional material necessarily relies on techniques with sufficient spatial resolution. The increased use of these microanalysis or microprobe techniques has created a demand for appropriate quality assurance tools, such as reference materials. In this paper a number of issues related to the certification of reference materials for multifunctional materials are discussed. Examples of reference materials are shown to illustrate the particular challenges the reference material producer is faced with such as micro-homogeneity, minimum sample intake and stability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Pages:

635-640

Citation:

Online since:

August 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ISO Guide 30: Terms and definitions used in connection with reference materials. (International Organization for Standardization, Switzerland 1992).

Google Scholar

[2] P. Howarth and F. Redgrave: Metrology - in short (ISBN 87-988154-1-2, 2nd ed. 2003. ).

Google Scholar

[3] ISO Guide 31: Reference materials - Contents of certificates and labels. (International Organization for Standardization, Switzerland 2000).

Google Scholar

[4] L. Kempenaers, K. Janssens, L. Vincze, B. Vekemans, A. Somogyi, M. Drakopoulos, A. Simionovici, F. Adams: Anal. Chem. Vol. 74 (2002), p.5017.

DOI: 10.1021/ac025662g

Google Scholar

[5] L. Kempenaers, K. Janssens, K. P. Jochum, L. Vincze, B. Vekemans, A. Somogyi, M. Drakopoulos, F. Adams: J. Anal. At. Spectrom. Vol. 18 (2003), p.350.

DOI: 10.1039/b212196d

Google Scholar

[6] Certificate of Analysis, Standard Reference Material 613, Trace elements in a glass matrix. (National Institute of Standards and Technology, USA 1992).

Google Scholar

[7] Certificate of Analysis, Standard Reference Material 482, Gold-copper wires for Microprobe analysis. (National Institute for Standards and Technology, USA 1988).

Google Scholar

[8] Certificate of Analysis, Standard Reference Material 2063a, Microanalysis thin film Mg-SiCa-Fe. (National Institute for Standards and Technology, USA 1993).

Google Scholar

[9] Certificate of Analysis, Standard Reference Material 2066, K-411 Glass Microspheres. (National Institute for Standards and Technology, USA 2000).

Google Scholar

[10] R. Jacobs, J. Meneve, G. Dyson, D. G. Teer, N. Jennett, P. Harris, J. von Stebut, C. Comte, P. Feuchter, A. Cavaleiro, H. Ronkainen, K. Holmberg, U. Beck, G. Reiners, C. D. Ingelbrecht: Surf. & Coat. Tech. Vol. 174-175 (2003), p.1008.

DOI: 10.1016/s0257-8972(03)00470-5

Google Scholar

[11] C. D. Ingelbrecht, R. Jacobs, J. Meneve, N. Jennett: The certification of critical coating failure loads a reference material for scratch testing according to ENV 1071: 1994, BCR- 692 (Office for Official Publications of the European Communities, Luxembourg).

Google Scholar

[12] G. Aldrich-Smith, N. Jennett, J. Housden: A round robin to measure the adhesion of thin coatings (VAMAS Technical Working Area 22, Report No. 46, ISSN 1016-2186, 2004).

Google Scholar

[13] K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann: Thin Solid Films Vol. 377-378 (2000), p.394.

DOI: 10.1016/s0040-6090(00)01367-5

Google Scholar

[14] H. Maes: The certification of the thickness of thin SiO2 layers on silicon wafers as measured by spectroscopic ellipsometry (IMEC, Belgium 1995).

Google Scholar

[15] J. Nunn, W. Mirande, N. Talene, P. Salieri: The BCR sub-micrometre photomask linewidth standard BCR-676 (Office for Official Publications of the European Communities, Luxembourg 1998).

Google Scholar