A Kink-Soliton Model of Charge Transport through Microtubular Cytoskeleton

Article Preview

Abstract:

Contemporary trends in science and technology are characterized by integration of biological and technical systems, like in nanotechnology, nanobiology, and quantum medicine. In our case, we were motivated by a necessity to understand charge transport through microtubular cytoskeleton as a constitutive part of acupuncture system. The high frequency component of acupuncture currents, widely exploited in microwave resonance stimulation of acupuncture system in the past decade, implies that explanation of the cytoplasmatic conductivity should be sought in the framework of Frohlich theory. Accordingly, in this paper we critically analyze the problem of the microwave coherent longitudinal electrical oscillations as a theoretical basis for understanding soliton phenomena in microtubules, showing that charged kink-soliton nonlinear microtubular excitations might be a good candidate for charge transport in microtubules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

507-512

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Pomeranz, in Scientific Bases of Acupuncture, Eds. B. Pomeranz, G. Stux, Springer, Berlin (1989).

DOI: 10.1007/978-3-642-73757-2

Google Scholar

[2] S. P. Sit'ko, L. N. Mkrtchian, Introduction to Quantum Medicine, Pattern, Kiev (1994); Biological Aspects of Low Intensity Millimeter Waves, Eds. N. D. Devyatkov, O. Betskii, Seven Plus, Moscow (1994).

Google Scholar

[3] W. R. Adey, Proc. IEEE, 68 (1980), p.119, and references therein.

Google Scholar

[4] Z. Jovanović-Ignjatić, D. Raković, Acup. & Electro-Therap. Res., The Int. J., 24, 105 (1999).

Google Scholar

[5] H. Frohlich, Int. J. Quantum Chem., 2 (1968), p.641.

Google Scholar

[6] S. E. Li, V. F. Mashansky, A. S. Mirkin, in Vibrational Biomechanics. Using Vibrations in Biology and Medicine, Part I: Theoretical Bases of Vibrational Biomechanics, Ed. K. V. Frolov, Nauka, Moscow (1989).

Google Scholar

[7] E. R. Kandel, S. A. Siegelbaum, J. H. Schwartz, in Principles of Neural Science, Eds. E. R. Kandel, J. H. Schwartz, T. M. Jessell, Elsevier, New York (1991), Ch. 9.

DOI: 10.1126/science.255.5041.219.a

Google Scholar

[8] S. R. Hammeroff, R. Penrose, in Eds. J. King and K. H. Pribram, Lawrence Erlbaum, Mahwah, NJ (1995).

Google Scholar

[9] Z. Ivić, Dynamic and Transport Properties of Solitons in One-Dimensional Molecular Crystals in the Contact with Thermostat, Ph. D. Thesis, Faculty of Science, Belgrade (1988).

Google Scholar

[10] M. V. Satarić, R. B. Žakula, S. Zeković, J. Pokorny, J. Ftala, Biosystems, 39 (1996), p.127.

DOI: 10.1016/0303-2647(96)01610-3

Google Scholar

[11] V. A. Kovarskii, Phys. Uspekhi, 42 (1999), p.797.

Google Scholar

[12] S. Hagan, S. Hameroff, J. Tuszynski, Phys. Rev. E, 65, 061901 (2002), and references therein.

Google Scholar

[13] M. V. Satarić, R. B. Žakula, J. A. Tuszynski, Nanobiology, 1 (1992), p.445.

Google Scholar

[14] D. N. Zubarev, Equilibrium and Nonequilibrium Statistical Mechanics, Consultants Bureau, New York (1974).

Google Scholar

[15] M. Satarić, Dj. Koruga, Z. Ivić, R. Žakula, J. Mol. Electronics, 6 (1990), p.63.

Google Scholar

[16] M. V. Satarić, J. A. Tuszynski, R. B. Žakula, Phys. Rev. E , 48 (1993), p.589.

Google Scholar

[17] F. G. Portnov, Electropuncture Reflexotherapeutics, Zinatne, Riga (1982), in Russian.

Google Scholar