Study and Modelling of Some Variant Selections in bcc to hcp Phase Transformations

Article Preview

Abstract:

One very often observes that the texture inheritance in BCC to HCP phase transformation shows variant selections, even though no external stress field is applied. These variant selections are related to the metallurgical state, the microstructure and the texture of the parent phase. From our own investigations, we came to the conclusion that the variant selections we observed in some phase transformations of various materials were influenced at different degrees by the elastic behaviour of the parent phase. Considering the transformation strain of each variant and the elastic anisotropy of the parent, we have build variant selection models based on energy minimum of elastic strain and assuming different types of interactions. The simulation results of texture transformation of a zircalloy sample show that the elastic characteristics of the parent phases are key parameters involved in the variant selection.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1111-1120

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Hutchinson, L. Ryde, E. Lindh and K. Tagashira : Mat. Sci. Eng. A 257 (1998), p.9.

Google Scholar

[2] Z.S. Zhu, J.L. Gu, R.Y. Liu, N.P. Chen and M.G. Yan : Mat. Sci. Eng. A 280 (2000), p.199.

Google Scholar

[3] B. Gardiola, M. Humbert, C. Esling, G. Flemming and K.E. Hensger : Mat. Sci. Eng. A 303 (2001), p.60.

Google Scholar

[4] N. Gey and M. Humbert : Acta Mater. 50 (2002), p.277.

Google Scholar

[5] D. Bhattacharrya G.B. Viswanathan, R. Denkenberger, D. Furrer and H. L. Fraser : Acta Mater. 51 (2002), p.4679.

Google Scholar

[6] N. Stanford and P.S. Bate: Acta Mater. 52 (2002), p.5214.

Google Scholar

[7] W.G. Burgers: Physica Vol. 1 (1934), p.561.

Google Scholar

[8] H. J. Bunge: Texture Analysis in Materials Science(Butterworths, London 1982).

Google Scholar

[9] M. Humbert, F. Wagner, H. Moustahfid and C. Esling: J. Appl. Cryst. 30 (1994), p.377.

Google Scholar

[10] A. Kelly and G.W. Groves: Crystallography and Crystal Defects (Longman, London 1970).

Google Scholar

[11] M. Humbert and N. Gey: Acta. Mat. 51 (2003), p.4783.

Google Scholar

[12] T. Mura: Micromechanics of Defects in Solids (Kluwer, Dochdrecht, 1991).

Google Scholar

[13] N. Gey, E. Gautier , M. Humbert, A. Cerqueira, J.L. Béchade and P. Archambault: Journal of Nuclear Materials. 302 (2002), p.175.

Google Scholar

[14] N. Gey, M. Humbert, E. Gautier and J.L. Béchade: Journal of Nuclear Materials. 328 (2004), p.137.

Google Scholar

[15] M. Humbert and N. Gey,: J. Appl. Cryst. 35 (2002), p.401.

Google Scholar

[16] N. Gey and M. Humbert: J. Mat. Sci. 38 (2003), p.1289.

Google Scholar

[17] A. Heiming, W. Petry, J. Trampenau, M. Alba, C. Herzig, H.R. Schober and G. Vogl: Phys. Rev. B 43 (1991), p.10948.

DOI: 10.1103/physrevb.43.10948

Google Scholar

[18] E. S. Fischer and C. Renken, Phys. Rev. 135 (1964), p.482.

Google Scholar

[19] P. Barberis, F. Montheillet and C. Chauvy: Proceedings of ITAP2 (in press).

Google Scholar