Micromechanisms Involved in Grain Boundary Engineering

Article Preview

Abstract:

Grain boundary engineering has been applied to different materials in order to increase properties particularly sensitive to intergranular phenomena. This work analyses the micromechanisms that allow the control of the amount of special boundaries which respect coincidence site lattice theory. α-brass, a lead alloy, Inconel 625 and Inconel 600 were submitted to different thermomechanical treatments and were analyzed via electron backscatter diffraction in order to characterize their grain boundaries. The occurrence of thin twins in some crystal directions during the deformation step seems to determine the results obtained as well as strain induced boundary migration.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1225-1230

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Watanabe: Res. Mechanica, Vol. 11 (1984), pp.47-84.

Google Scholar

[2] J. L. Walter, J. H. Westbrook and D. A. Woodord: Grain Boundaries in Engineering Materials (Metallurgical Society of AIME, 1974).

Google Scholar

[3] Grain Boundary Structure and Kinetics, Materials Science Seminar, Milwakee (ASTM, 1979).

Google Scholar

[4] G. Palumbo, E. M. Lehockey and P. Lin: JOM, Vol. 50, Num. 2 (1998), pp.40-43.

Google Scholar

[5] E. M. Lehockey and G. Palumbo: Materials Science and Engineering, A237 (1997), pp.168-172.

Google Scholar

[6] G. Palumbo and K. T. Aust: Acta Metallurgica et Materiallia, Vol. 38, Num. 11 (1990), pp.2343-2352.

Google Scholar

[7] D. C. Crawford and G. Palumbo: Metallurgical Transactions A, Vol. 23A (1992), pp.1195-1206.

Google Scholar

[8] P. Lin, G. Palumbo, U. Erb and K. T. Aust: Scripta Metallurgica et Materialia, Vol. 33, Num. 9 (1995), pp.1387-1392.

DOI: 10.1016/0956-716x(95)00420-z

Google Scholar

[9] C. Cheung, U. Erb and G. Palumbo: Materials Science and Engineering A, Vol. A185 (1994), pp.39-43.

Google Scholar

[10] T. Watanabe and S. Tsurekawa: Acta Materialia, Vol. 47, Num. 15 (1999), pp.4171-4185.

Google Scholar

[11] E. M. Lehockey, G. Palumbo and P. Lin: Scripta Materialia, Vol. 39, Num. 3 (1998), pp.353-358.

Google Scholar

[12] D. G. Brandon: Acta Metallurgica, Vol. 14 (1966), pp.1479-1484.

Google Scholar

[13] G. Palumbo, K. T. Aust , E. M. Lehockey, U. Erb and P. Lin: Scripta Materialia, Vol. 38, Num. 11 (1998), pp.1685-1690.

DOI: 10.1016/s1359-6462(98)00077-3

Google Scholar

[14] R. C. Pond and D. A. Smith: Philosophical Magazine, Vol. 36, Num. 2 (1977), pp.353-366.

Google Scholar

[15] H. Kokawa, T. Watanabe and e S. Karashima: Journal of Materials Science, Vol. 18 (1983), pp.1183-1194.

Google Scholar

[16] C. B. Thomson and V. Randle: Acta Materialia, Vol. 47, Num. 12 (1997), pp.4203-4209.

Google Scholar

[17] V. Randle: Acta Materialia, Vol. 47, Num. 15 (1999), pp.4187-4196.

Google Scholar

[18] R. L. Fullman and J. C. Fisher: Journal of Applied Physics, Vol. 22, Num. 11 (1951), pp.1350-1355.

Google Scholar

[19] C. B. Thomson and V. Randle: Acta Materialia, Vol. 45, Num. 12 (1997), pp.4909-4916.

Google Scholar

[20] M. Kumar, A. J. Schwartz and W. E. King: Acta Materialia, Vol. 50 (2002), pp.2599-2612.

Google Scholar

[21] P. Lin G. Palumbo and K. T. Aust: Scripta Materialia, Vol. 36, Num. 10 (1997), pp.1145-1149.

Google Scholar