Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets

Article Preview

Abstract:

The drawing textures of aluminum, copper, gold, silver, and Cu-7.3% Al bronze wires are approximated by major <111>+minor <100>, except silver wire, which can have the <100> texture at extremely high reductions. The <111> component in the drawing textures of aluminum, copper, gold, and silver transform to the <100> component after recrystallization. On the other hand, the <111> deformation texture of the Cu-7.3% Al bronze wire, which has very low stackingfault- energy, remains unchanged after recrystallization. The Brass component {110}<112> in rolling textures of high stacking-fault-energy metals such as aluminum and copper alloys changes to the Goss orientation {110}<001> after recrystallization. However, the Brass orientation in rolling textures of low stacking-fault-energy fcc metals such as brass appears to change to the {236}<385> orientation after recrystallization. These results seem to be related to the stability of dislocations during annealing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1243-1248

Citation:

Online since:

September 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Murr: Interface Phenomena in Metals and Alloys (Addison-Wesley 1975) p.131.

Google Scholar

[2] H. Park and D.N. Lee: Mechanical Properties of Advanced Engineering Materials, edited by B. Xu, M. Tokuda, G. Sun, Tsinghua University Press, Beijing, (2003), p.13.

Google Scholar

[3] H. Park and D.N. Lee: Metall. Mater. Trans. Vol. 34A (2003), p.531.

Google Scholar

[4] J-H Cho, Ph.D. Thesis, Seoul National University, Seoul, Korea (2003).

Google Scholar

[5] H. -J. Shin, H. -T. Jeong and D. N. Lee: Mater. Sci. Eng. Vol. A279 (2000), p.244.

Google Scholar

[6] S. Kim, C. -H. Choi and D.N. Lee: Mater. Sci. Forum Vol. 408-412 (2002), p.913.

Google Scholar

[7] J. Hjelen, R. Ørsund and E. Nes: Acta metall. mater. Vol. 39 (1991), p.1377.

Google Scholar

[8] O. Engler: Acta mater. Vol. 48 (2000), p.8427.

Google Scholar

[9] O. Engler: Acta mater. Vol. 49 (2001), p.1237.

Google Scholar

[10] P.A. Beck and H. Hu: Trans AIME Vol. 194(1962), p.83.

Google Scholar

[11] D.N. Lee: Scripta Metall. Mater. Vol. 32 (1995), p.1689.

Google Scholar

[12] D.N. Lee: Int. J. mech. Sci. Vol. 42 (2000), p.1645.

Google Scholar

[13] D.N. Lee: Phil. Mag. In press.

Google Scholar

[14] D. A. Molodov, in: G. Gottstein and D. A. Molodov (Eds), The First Joint International Conference on Recrystallization and Grain Growth (Springer-Verlag 2001), p.21.

Google Scholar

[15] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, 1995).

Google Scholar

[16] A.N. Aleshin, V.Y. Aristov, B.S. Bokstein and L.S. Shvindlerman: Phys. stat. sol. Vol. A45 (1978), p.359.

Google Scholar

[17] D.N. Lee and K. -H. Hur: Scripta Mater. Vol. 40 (1999), p.1333.

Google Scholar

[18] D.N. Lee and K. -H. Hur: Textur. Microstr. Vol. 34 (2000), p.181.

Google Scholar

[19] F. Czerwinski, H. Li, M. Megret and J.A. Szpunar: Scripta Metall. Mater. Vol. 37 (1997), p. (1967).

Google Scholar

[20] Y. -B. Park, J. Park, C.S. Ha and T.H. Yim: Mater. Sci. Forum. Vol. 408-412 (2002), p.919.

Google Scholar

[21] D.N. Lee, H. -J. Shin and S. -H. Hong: Key Eng. Mater. Vol. 233-236 (2003), p.515.

Google Scholar

[22] M. Ferry and F.J. Humphreys: Acta mater. Vol. 44 (1996), p. (1923).

Google Scholar

[23] D.N. Lee: J. Mater. Process. Tech. Vol. 117 (2001), p.307.

Google Scholar