Grain Boundary Energy and Grain Growth in Highly-Textured Al Films and Foils: Experiment and Simulation

Article Preview

Abstract:

Relative grain boundary energy as a function of misorientation angle was measured in a cube-oriented, 120 µm-thick Al foil and in a <111> fiber-textured, 1.7 µm-thick Al film using a multiscale analysis of the grain boundary dihedral angles. For the Al foil, the energies of low-angle boundaries increased with misorientation angle, in good agreement with the Read-Shockley model. For the Al film, two energy minima were observed for high-angle boundaries. Grain growth was studied in 25 and 100 nm-thick films that were annealed at 400 °C for a series of times in the range of 0.5 to 10 h. For the 100 nm-thick film, grains approximately doubled their size (equivalent circular diameter) before grain growth stagnated. The steady-state distributions of reduced grain area for two-dimensional, Monte Carlo Potts and partial differential equation based simulations showed excellent agreement with each other, even when anisotropic boundary energies were used. However, the simulated distributions had fewer small grains than the experimental distributions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 495-497)

Pages:

1255-1260

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Mahadevan, D. Casasent , Proc. SPIE Vol. 4735 (2002), p.104.

Google Scholar

[2] C.C. Yang , W.W. Mullins, A.D. Rollett, Scripta Metall. Vol 44 (2001), p.2735.

Google Scholar

[3] C. Herring: in the The Physics of Powder Metallurgy, ed. W. E. Kingston, (McGraw-Hill Book Co., New York 1951).

Google Scholar

[4] B. L. Adams, D. Kinderlehrer, W. W. Mullins, A. D. Rollett, and S. Ta'asan, Scripta Mater., Vol. 38 (1997), p.531.

Google Scholar

[5] D. Kinderlehrer, I. Livshits, S. Ta'asan, and D. E. Mason, Proc. ICOTOM-12 (1999) p.1643.

Google Scholar

[6] B. L. Adams, D. Kinderlehrer, I. Livshits, S. Ta'asan, D. E. Mason, W. W. Mullins, G. S. Rohrer, A. D. Rollett, D. M. Saylor, and C. -T. Wu, Int. Sci. Vol. 7 (1999), p.321.

DOI: 10.1023/a:1008733728830

Google Scholar

[7] D. Kinderlehrer, I. Livshits, D. Mason, S. Ta'asan, Interface Sci. Vol. 10 (2002), p.232.

Google Scholar

[8] J. Kim, Ph.D. Thesis, Lehigh University, Bethelehem (2001).

Google Scholar

[9] http: /www. scioncorp. com.

Google Scholar

[10] K. Barmak, W. E. Archibald, A. D. Rollett, S. Ta'asan, D. Kinderlehrer, Mater. Res. Symp. Proc. Vol. 819, N6. 6 (2004), p.1.

Google Scholar

[11] D. Srolovitz, J. Vac. Sci. Technol. Vol. A4 (1986), p.2925.

Google Scholar

[12] D. Kinderlehrer, I. Livshits, S. Ta'asan, unpublished.

Google Scholar

[13] S. Ta'asan, P. Yu, I. Livshits, D. Kinderlehrer, J. Lee, Proc. 44 thAIAA/ASME/ ASCE/AHS Structures, Structural Dynamics and Materials, Norfolk, VA, in press.

DOI: 10.2514/6.2003-1611

Google Scholar

[14] D. Kinderlehrer, I. Livshits, F. Manolache, A. D. Rollett, S. Ta'asan, Mater. Res. Soc. Symp. Proc. Vol. 652, Y1. 5 (2001), p.1.

Google Scholar

[15] W. T. Read and W. Shockley, Phys. Rev. Vol. 78, (1950), p.275.

Google Scholar

[16] C. C. Yang. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh (2000).

Google Scholar

[17] G. C. Hasson, C. Goux, Scripta Metall. Vol. 5 (1971), p.889.

Google Scholar

[18] D. Wolf, J. Mater. Res. Vol. 5 (1990), p.1708.

Google Scholar

[19] M. Upmanyu, D. Srolovitz, L. Shvindlerman, G. Gottstein, Acta Mater. Vol. 47 (1999), p.3901.

Google Scholar

[20] W.W. Mullins: Acta Metall. Vol. 6 (1958), p.414.

Google Scholar

[21] H. J. Frost, C. V. Thompson, D. T. Walton, Acta Metall. Mater. Vol. 38 (1990), p.1455.

Google Scholar

[27] T. B. Read: Free Energy of Formation of Binary Compounds - An Atlas of Charts for HighTemperature Chemical Calculations, (The MIT Press, Cambridge, Massachusetts, 1971) p.27.

Google Scholar

[23] H. J. Frost, Y. Hayashi, C. V. Thompson, D. T. Walton, Mater. Res. Soc. Symp. Proc. Vol. 317 (1994), p.431.

Google Scholar

[24] C. V. Thompson, R. Carel, Mater. Sci. Eng. Vol. B32 (1995), p.211.

Google Scholar

[25] Gerth, D. Katzer, M. Krohn, Thin Solid Films Vol. 208 (1992), p.67.

Google Scholar

[26] M. Legros, K. J. Hemker, A. Gouldstone, S. Suresh, R. -M. Keller-Flaig, E. Arzt, Acta Mater. Vol. 50 (2002), p.3435.

DOI: 10.1016/s1359-6454(02)00157-x

Google Scholar

[27] J. Koike, S. Utsunomiya, Y. Shimoyama, K. Maryuama, H. Oikawa, J. Mater. Res. Vol. 13 (1998), p.3256.

Google Scholar