Influence of Mg on the Structural and Optical Properties of LiNbO3 Thin Films Grown by Polymeric Precursor Method

Article Preview

Abstract:

A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 498-499)

Pages:

342-349

Citation:

Online since:

November 2005

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. S. Weis and T. K. Gaylord, Appl. Phys A 37 (1985), p.191.

Google Scholar

[2] K. Kikita, Y. Isobe, T. Yogo, S. Ono and S. I. Hirano, J. Am. Ceram. Soc 79 (1996), p.2289.

Google Scholar

[3] Hirano, K. Kikuta and K. Kato, Adv. Ceram. Mat. 200 (1990), p.3.

Google Scholar

[4] Y. Furukawa, K. Katamura, N. Igi and J. M. Martin, J. Cryst. Growth 211 (2000), p.230.

Google Scholar

[5] M. P. Micheli, Mater. Res. Symp. Proc 244, (1992), p.295.

Google Scholar

[6] Y. Sakashita, H. Segawa, J. Appl. Phys 77 (1995), p.5995.

Google Scholar

[7] T. Gilbert, C. -Y. Hung, T.E. Schlesinger, M. Migliuolo, J. Appl. Phys. 79 (1996), p.3548.

Google Scholar

[8] P. Aubert, G. Garry, R. Bisaro, J. Garcia Lopez, Appl. Surf. Sci 86 (1995), p.144.

Google Scholar

[9] T.A. Derouin, C.D.E. Lakeman, X.H. Wu, F.F. Lange, J. Mater. Res 12 (1997), p.1391.

Google Scholar

[10] V. Bouquet, M.I.B. Bernardi, S.M. Zanetti, E. Longo, E.R. Leite, J.A. Varela, M. Guilloux Viry, A. Perrin, J. Mater. Res 15 (2000), p.2446.

DOI: 10.1557/jmr.2000.0351

Google Scholar

[11] S.Y. Lee, R.S. Feigelson, J. Cryst. Growth 186 (1998), p.594.

Google Scholar

[12] M.P. Pechini, US Patent No. 3. 330 697, 11 July (1967).

Google Scholar

[13] K. Nashimoto, H. Moruama, E. Osakabe, Jpn. J. Appl. Phs 35 (1996), p.4936.

Google Scholar

[14] T.A. Derouin, C.D.E. Lakeman, X.H. Wu, J.S. Speck, F .F. Lange, J. Mater. Res 12 (1997), p.1391.

Google Scholar

[15] L.E. Cross, R. E. Newnham, 1987, History of Ferroelectrics, Vol III, Westerville.

Google Scholar

[16] P. Aubert, G. Gary, R. Bizaro, J. G. Lopez and C. Urlacher, Microelectronic Eng 29 (1995), p.107.

Google Scholar

[17] K. Nashimoto, H. Moriyama and E. Osakabe, Jpn. J. Appl. Phys 35 (1996), p.4936.

Google Scholar

[18] P. G. Clem and D. A. Payne, Mater. Res. Soc. Symp. Proc 401(1996), p.249.

Google Scholar