Fracture and Fatigue Resistance of Ultrafine Grain CuCrZr Alloy Produced ECAP

Article Preview

Abstract:

Anisotropy of mechanical properties, fatigue and fracture resistance of precipitation hardened CuCrZr alloy ultrafine (UFG) grained by equal-channel angular pressing (ECAP) is in focus of the present communication. Fracture toughness was estimated in terms of J-integral and the fatigue crack growth rate was quantified. It was found that although the estimated JIC-value appeared lower than that reported in the literature for a reference alloy, the ductility, fracture and crack growth resistance remained satisfactory after ECAP while the tensile strength and fatigue limit improved considerably. The stable crack growth rate did not differ very much for ECAP and reference conventional CuCrZr and no remarkable anisotropy in the stable crack growth was noticed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

811-816

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Kalinin, V. Barabash, A. Cardella, J. Dietz, K. Ioki, R. Matera, R.T. Santoro, R. Tivey: J Nuclear Mat 238-287 (2000) 10.

DOI: 10.1016/s0022-3115(00)00305-6

Google Scholar

[2] J.W. Davis, G.M. Kalinin: J Nuclear Mat 258-263 (1998) 323.

Google Scholar

[3] R. Suzuki, M. Saito, T. Hatano: Fusion Science and Technology 44 (2003) 242.

Google Scholar

[4] P. Karjalainen-Roikonen, M. Pykkönen, S. Tähtinen: J Nuclear Mat 258-263 (1998) 462.

Google Scholar

[5] H. Nagasawa, S. Aoki, A. Katayama: Quarterly Report of RTRI 39, 3 (1998) 142.

Google Scholar

[6] A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov: Acta Mater 50 (2002) 1636.

Google Scholar

[7] A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, V.I. Kopylov: Mater Trans 45 (2004) 2187.

Google Scholar

[8] A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov: Acta Mater (2005) (in press).

Google Scholar

[9] A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kawazoe: Nanostr Mater 11 (1999) 925.

Google Scholar

[10] C.S. Chung, J.K. Kim, H.K. Kim, W.J. Kim: Mater Sci Eng A337 (2002) 39.

Google Scholar

[11] H-K. Kim, M-I. Choi, C-S. Chung, D.H. Shin: Mater Sci Eng A340 (2003) 243.

Google Scholar

[12] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr Mat Sci 45 ( 2000) 103.

Google Scholar

[13] E.F. Dudarev, G.P. Bakach, G.P. Grabovetskaya, L.V. Chernov: Phys Mesomechanics 4 (2001) 97.

Google Scholar

[14] A.G. Atikins, Y-W. May: Elastic and PlasticFracture, Ellis Horwood Ltd., England (1985).

Google Scholar

[15] S. Suresh: Fatigue of Materials, Cabmridge University Press, United Kingdom (1991).

Google Scholar

[16] A. Vinogradov and S. Hashimoto: Advanced Engineering Materials 5 (2003) 351.

Google Scholar