The Effect of the Initial Orientation on Microstructure Development of Copper Single Crystals Subjected to Equal-Channel Angular Pressing

Article Preview

Abstract:

Copper single crystals were subjected to equal-channel angular pressing (ECAP) via the so-called route A and Bc, in order to examine the influence of initial crystallographic orientation and processing route on microstructure development and grain fragmentation. Microstructural changes were examined by transmission electron microscopy (TEM). The pressing via the route Bc resulted in finer microstructure for all orientations in terms of grain size, equiaxiality and orientation scattering after four passes. Effect of initial crystallographic orientation on the grain refinement was also recognized, and it might be attributed to heterogeneous deformation such as shear bands, whose formation is strongly orientation dependent. After eight passes, however, the effect of processing route and initial orientation cannot be recognized.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 503-504)

Pages:

799-804

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and A.E. Kopylov: Russian Metally 1 (1981), p.99.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. 45 (2000) p.103.

Google Scholar

[3] H. Miyamoto, U. Erb, T. Koyama, T. Mimaki, A. Vinogradov and S. Hashimoto: Phil. Mag. Let., 84 (2004), p.235.

Google Scholar

[4] H. Miyamoto, U. Erb, T. Koyama, T. Mimaki., A. Vinogradov and S. Hashimoto: Mater. Sci. Forum Vol. 426-432 (2003) p.2795.

DOI: 10.4028/www.scientific.net/msf.426-432.2795

Google Scholar

[5] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta mater. 45 (1997), p.4733.

Google Scholar

[6] Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. 29A (1998), p.2245.

Google Scholar

[7] A. Gholinia, P.B. Prangnell and M.V. Markushev: Acta mater. 48 (2000), p.1115.

Google Scholar

[8] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon: Acta mater. 46 (1998), p.1589.

Google Scholar

[9] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A 299 (2001), p.59.

Google Scholar

[10] K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A 29 (1998), p. (2011).

Google Scholar

[11] S. Ferrasse, V.M. Segal, S.R. Kalidindi and F. Alford: Mater. Sci. Eng. A 368 (2004), p.28.

Google Scholar

[12] P.B. Prangnell and J.R. Bowen, in: Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran and T.C. Lowe(Eds), Ultrafine grained materials II, (The Minerals, Metals and Materials Society) pp.89-98.

DOI: 10.1002/9781118804537

Google Scholar

[13] Y.T. Zhu and T.C. Lowe: Mater. Sci. Eng. A 291 (2000), p.46.

Google Scholar

[14] A. Vinogradov, T. Mimaki, S. Hashimoto and R.Z. Valiev: Scripta Mater. 41(1999), p.319.

Google Scholar

[15] T. Yamasaki, H. Miyamoto, T. Mimaki, A. Vinogradov and S. Hashimoto: Mater. Sci. Eng. A 318 (2001), p.122.

Google Scholar

[16] H. Miyamoto, T. Mimaki, A. Vinogradov and S. Hashimoto: Ann. Chim. Sci. Mat., 27 (2002), p. S197.

Google Scholar

[17] D. Kuhlmann-Wilsdorf and N. Hansen: Scripta metal. 25(1991) , p.1557.

Google Scholar

[18] D.A. Hughes, N. Hansen: Acta mater. 48 (2000) , p.2985.

Google Scholar

[19] G. Winther: Acta mater. 51 (2003) , p.417.

Google Scholar