Mechanical Characterization of Thin Films by the Capacitance-Voltage Measurement of Microstructures

Article Preview

Abstract:

This paper presents a novel and high-precision technology for extracting the Young’s modulus of thin films through the capacitance-voltage (C-V) measurement of microstructures. An algorithm considering the electric-mechanical coupling effect and the distributed character of microstructures is developed for extracting the Young’s modulus through the C-V measurement of microstructures. The average error percentage of the extracted Young’s modulus of single-crystalline silicon is below 1% and the high precision and repeatability of the present methodology are verified. Since the driving and response signals are both electric, they could be accomplished using existing semiconductor testing equipments through probing on the bonding pads of devices. Because hardware replacement could be avoided, this methodology shows substantial advantage over other property-extraction methods for large-scale implementation in semiconductor or MEMS fabs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

145-150

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Stephen D. Senturia, Microsystem Design, Kluwer Academic Publishers, Boston, 7 (2001).

Google Scholar

[2] P. M. Osterberg and S. D. Senturia, J. MEMS 6(2), 107 (1997).

Google Scholar

[3] K. E. Petersen, IEEE Trans. Electron Devices ED-25(10), 1241 (1978).

Google Scholar

[4] H. A. C. Tilmans, Micro-mechanical sensors using encapsulate built-in resonant strain gauges, Ph.D. Dissertation, MESA Research Institute, University Twente, Enschede, The Netherlands (1993).

Google Scholar

[5] F. Maseeh, M. A. Schmidt, M. G. Allen, and S. D. Senturia, IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6-9, 84 (1988).

Google Scholar

[6] S. Wang, S. Crary, and K. Najafi, Mat. Res. Soc. Symp., 203 (1992).

Google Scholar

[7] J. A. Schweitz, MRS Bulletin 17(7), 34 (1992).

Google Scholar

[8] S. D. Senturia, IEEE Transducers 87, Tokyo, Japan, 11 (1987).

Google Scholar

[9] M. G. Allen, M. Mehregany, R. T. Howe, and S. D. Senturia, Applied Physics Letter 51, 241 (1987).

Google Scholar

[10] K. Najafi and K. Suzuki, IEEE MEMS '89, Salt Lake City, UT, Feb. 20-22, 96 (1989).

Google Scholar

[11] M. J. Kobrinsky, E. R. Deutsch, and S. D. Senturia, J. MEMS 9(3), 361 (2000).

Google Scholar

[12] E. D. Chan, K. Garikipati, and R. W. Dutton, J. MEMS 8(2), 208 (1999).

Google Scholar

[13] P. Osterberg, H. Yie, X. Cai, J. White, and S. D. Senturia, IEEE MEMS '94 Workshop, Oiso, Japan, Jan. 25-28, 28 (1994).

Google Scholar

[14] B. E. Artz and L. W. Cathy IEEE Transducers'92 Workshop, Hilton Head, SC, June, 190 (1992).

Google Scholar

[15] V. L. Rabinovich, et al., IEEE Transducers'99 Conference, Sendai, Japan, June 7-10, Paper 2P1. 7 (1999).

Google Scholar

[16] J. R. Gilbert, P. M. Osterberg, R. M. Harris, D. O. Ouma, X. Cai, and A. Pfajfer, IEEE MEMS '93 Workshop, Ft. Lauderdale, FLA, Feb. 7-10, 207 (1993).

Google Scholar

[17] M. Fischer, M. Giousouf, J. Schaepperle, D. Eichner, M. Weinmann, W. von Munch, and F. Assmus, Sensors and Actuators A: Physical 67, 89 (1998).

DOI: 10.1016/s0924-4247(97)01770-6

Google Scholar

[18] Rob Legtenberg, John Gilbert, Stephen D. Senturia, and Miko Elwenspoek, J. MEMS 6(3), 257 (1997).

Google Scholar

[19] Byung Chai Lee and Eun Sok Kim, J. MEMS 9(3), 399 (2000).

Google Scholar

[20] Yuh-Chung Hu, C. M. Chang, and S. C. Huang, Sensors and Actuators A: Physical 112(1), 155 (2004).

Google Scholar

[21] Yuh-Chung Hu, Yung-Hsiang Wang, and Shyh-Chin Huang, The 1st International Symposium on Micro & Nano Technology, Honolulu, Hawaii, USA, March 14-17, Paper III-2-01 (2004).

Google Scholar

[22] Marc J. Madou, Fundamentals of Microfabrication, CRC Press LLC, New York, 2nd ed., 198 (2002).

Google Scholar