Thermo-Mechanical Effect on Nanostructure Formation Using Atomic Force Microscopy

Article Preview

Abstract:

Molecular dynamics (MD) simulation and the experiment of adhesion force measurement were introduced to study the nanostructure formation process in the atomic force microscopy. The atomic level process of the nanostructure formation and the thermo-mechanical effect caused by the factors of the contact area, the adhesion force, and the temperature were clearly shown and discussed. The size of the forming nanostructures was found to be positively related to the contact area and temperature, but the adhesion force would decrease as the temperature increase. In the case of higher temperature with smaller adhesion force, however, the larger-size nanostructure could still be made.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

151-156

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. I. Pascual, J. Méndez, J. Gómez-Herrero, A. M. Baró, and N. García: Phys. Rev. Lett., Vol. 71(12) (1993), pp.1852-1855.

DOI: 10.1103/physrevlett.71.1852

Google Scholar

[2] G. Rubio, N. Agraït, and S. Vieira: Phys. Rev. Lett., Vol. 76(13) (1996), pp.2302-2305.

Google Scholar

[3] D. Erts, A. Lõhmus, R. Lõhmus, H. Olin, A. V. Pokropivny, L. Ryen, and K. Svensson: Appl. Surf. Sci., Vol. 188 (2002), pp.460-466.

DOI: 10.1016/s0169-4332(01)00933-3

Google Scholar

[4] D. Fujita, Q. Jiang, and H. Nejoh: J. Vac. Sci. Technol. B, Vol. 14(6) (1996), pp.3413-3419.

Google Scholar

[5] Stefan Berbner and Friedrich Löffler: Powd. Technol., Vol. 78 (1994), pp.273-280.

Google Scholar

[6] L. Kuipers, M.S. Hoogeman, J.W.M. Frenken: Surf. Sci., Vol. 340 (1995), pp.231-24.

Google Scholar

[7] Gary Toikka, Geoffrey M. Spinks, and Hugh R. Brown: Langmuir, Vol. 17 (2001), pp.6207-6212.

Google Scholar

[8] Advanced Storage Technologies Group and Micro-/Nanomechanics Group of IBM: A Nanotechnology-based Approach to Data Storage (Proceedings of the 29th VLDB Conference, Germany 2003).

Google Scholar

[9] B. Bhushan: Handbook of Micro/Nano Tribology (CRC Press, Boca Raton 1995).

Google Scholar

[10] T. H. Fang, C. I. Weng, and J. G. Chang: Surf. Sci., Vol. 501 (2002), pp.138-147.

Google Scholar

[11] G. V. Dedkov: Phys. Stat. Sol. (a), Vol. 179 (2000), pp.3-75.

Google Scholar

[12] U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton: Science, Vol. 248 (1990), pp.454-461.

Google Scholar

[13] R. Komanduri, N. Chandrasekaran, and L. M. Raff: Phys. Rev. B, Vol. 61(2000), pp.14007-14019.

DOI: 10.1103/physrevb.61.14007

Google Scholar

[14] K. Maekawa and A. Itoh: Wear, Vol. 188 (1995), pp.115-122.

Google Scholar

[15] A. M. Childs, M. H. Shapiro, and T. A. Tombrello: Nucl. Instr. and Meth. in Phys. Res. B, Vol. 143 (1998), pp.298-305.

Google Scholar

[16] J. M. Haile: Molecular Dynamics Simulation (John Wiley & Sons, New York 1992).

Google Scholar

[17] K. Takayanagi, Y. Kondo, and H. Ohnishi: JEOL News, Vol. 34E(1) (1999), pp.20-23.

Google Scholar

[18] J. Israelachvili: Intermolecular & Surface Forces (Academic Press, San Diego 1992).

Google Scholar