Nanosecond Time Resolution In Situ Optical Reflection and Transmission Measurements during XeF Excimer Laser Interaction with Amorphous Silicon Thin Films

Article Preview

Abstract:

XeF excimer laser-induced melting and recrystallization of amorphous silicon was studied using in-situ online time-resolved reflection and transmission measurements with a nanosecond time resolution. The explosive crystallization was observed for 50nm thick amorphous silicon on SiO2 deposited on non-alkali glass substrate upon 25ns pulse duration of excimer laser. Three distinct regrowth regimes were found using various excimer laser fluences. Scanning electron microscopy, Raman spectroscopy and atomic force microscopy were used to evaluate the excimer laser- irradiated region of the sample. Grain size, surface roughness and melt duration as a function of different laser fluences are also determined.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 505-507)

Pages:

337-342

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew,J. M. Poate, and D. C. Jacobson, Phys. Rev. Lett. 50, 896(1983).

DOI: 10.1103/physrevlett.50.896

Google Scholar

[2] J. S. Im, H. J. Kim, and M. O. Thompson, Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films, Appl. Phys. Lett. 63, 1969 (1993).

DOI: 10.1063/1.110617

Google Scholar

[3] J. Narayan, C.W. White, M.J. Aziz, B. Strritzker, and A. Walthuis, J. Apply Phys. 57, 564(1985).

Google Scholar

[4] J. Boneberg and P. Leiderer, Phys. Status Solid A 166, 643 (1998).

Google Scholar

[5] G.E. Jellison, D.H. Lowndes, Appl. Phys. Lett. 47, 718 (1985).

Google Scholar

[6] W. Sinke and F. W. Saris, Phys. Rev. Lett. 53, 2121 (1984).

Google Scholar

[7] K. Murakami, O. Eryu, K. Takita and K. Masuda, Physical review letters, Volume 59 Number 19, November (1987).

Google Scholar

[8] M. Hatano, S. Moon, M. Lee, K. Suzuki and C. P. Grigoropoulos, Journal of Non-Crystalline Solids, Vol. 266-269, pp.654-658 (2000).

DOI: 10.1016/s0022-3093(99)00768-1

Google Scholar

[9] G. Aichmayr, D. Toet, M. Mulato, P.V. Santos, A. Spangenberg, R.B. Bergmann, Journal of Non-Crystalline Solids 227-230, 921-924(1998).

DOI: 10.1016/s0022-3093(98)00213-0

Google Scholar

[10] R. Ishihara, A. Burtsev, and P.F.A. Alkemade: Japan Journal Applied Physics 39 (2000) 3872.

Google Scholar

[11] J. Siegel, J. Solis, C. N. Afonso, and C. Garcia, J. Appl. Phys. 80, 6677 (1996).

Google Scholar

[12] J.S. Im, H.J. Kim, On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films, Appl. Phys. Lett. 64, 2303 (1994).

DOI: 10.1063/1.111651

Google Scholar

[13] H. Kakinuma, M. Mohri, M. Sakamoto and T. Tsuruoka, J. Appl. Phys. 70, 7374 (1991).

Google Scholar

[14] V. A. Volodin, M. D. Efremov, V. A. Gritsenko, and S. A. Kochubei, Appl. Phys. Lett. 73, 1212 (1998).

Google Scholar

[15] T.D. Kang, H. Lee, S.J. Park, J. Jang, S. Lee, J. Appl. Phys. 92, 2467 (2002).

Google Scholar

[16] D.K. Fork�G.B. Anderson�J.B. Boyce�R. I. Johnson and P. Mei., Appl. Phys. Lett. 68, 2138 (1996).

Google Scholar

[17] In-Cha Hsieh, Shui-Yang Lieh, Dong-Sing Wuu , Thin Solid films 473, 169-175(2005).

Google Scholar

[18] R. Ishihara, A. Burtsev, Japan. J. Appl. Phys. Vol. 37, No. 1, pp.1071-1075 (1998).

Google Scholar

[19] Y. Hiroshima, R. Ishihara, V. Rana, D. Abe, S. Inoue, T. DShimoda, J.W. Metselaar, C.I.M. Beenakker , Single-crystalline Si TFTs fabricated by the µ-Czochralski (grain-filter) process, Technical Digest The International Workshop on Active-Matrix Liquid-Crystal Displays, Tokyo, Japan, pp.157-158.

DOI: 10.1889/1.1830961

Google Scholar