Three-Dimensional Single Crystal Morphologies of Diffusion Limited Growth in Experiments and Phase Field Simulations

Article Preview

Abstract:

In growth experiments for 3D xenon crystals we have observed three different morphologies: dendrites, doublons and seaweed. The 3D shape of dendrites and doublons is reconstructed by means of refractive reconstruction. Our measurements on the fin thickness of dendrites support the validity of analytical predictions by Brener. We have found that the fins of the doublon morphology can be fitted with the fin predictions for dendrites. Measurements of the doublon gap as a function of the supercooling show that the gap decreases hyperbolically with increasing supercooling. Phase field simulations of 3D doublons reveal that the channel shows an inner structure in the presence of anisotropy of surface tension. A combination of reconstructions and phase field simulations leads to a geometrical description of doublon cross sections.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Fleury, J.F. Gouyet, and M. Leonetti (Eds. ): Branching in nature (Springer, Berlin, 2001).

Google Scholar

[2] C. Godrèche (Ed. ): Solids Far From Equilibrium (Cambridge University Press, Cambridge, 1992).

Google Scholar

[3] E. Brener, H. Müller-Krumbhaar and D. Temkin: Phys. Rev. E 54 (1996), p.2714.

Google Scholar

[4] E. Brener, H. Müller-Krumbhaar and D. Temkin and T. Abel: Physica A 249 (1998), p.73.

Google Scholar

[5] S. Akamatsu, G. Faivre and T. Ihle: Phys. Rev. E 51 (1995), p.4751.

Google Scholar

[6] I. Stalder and J.H. Bilgram: Europhys. Lett. 56 (2001), p.829.

Google Scholar

[7] H. M. Singer and J. H. Bilgram: Phys. Rev. E, in print.

Google Scholar

[8] H. M. Singer, I. Singer-Loginova, J. H. Bilgram and G. Amberg: J. Cryst. Growth, submitted.

Google Scholar

[9] U. Bisang and J.H. Bilgram: Phys. Rev. E 54 (1996), p.5309.

Google Scholar

[10] H. M. Singer and J. H. Bilgram: J. Cryst. Growth 261 (2004), p.122.

Google Scholar

[11] G.B. McFadden, S.R. Coriell, and R.F. Sekerka: J. Cryst. Growth 208 (2000), p.726.

Google Scholar

[12] E. Brener and D. Temkin: Phys. Rev. E 51 (1995), p.351.

Google Scholar

[13] G. P. Ivantsov: Dokl. Akad. Nauk. SSSR 58 (1947), p.567.

Google Scholar

[14] E. Brener: Phys. Rev. Lett. 71 (1993), p.3653.

Google Scholar

[15] A. Karma, Y.H. Lee, and M. Plapp: Phys. Rev. E 61 (2000), p.3996.

Google Scholar

[16] H. M. Singer and J. H. Bilgram: Europhys. Lett., in print.

Google Scholar

[17] H. M. Singer and J. H. Bilgram: Phys. Rev. E 69 (2004), p.032601.

Google Scholar

[18] A.C. Sinnock and B.L. Smith: Phys. Rev. 181 (1969), p.1297.

Google Scholar

[19] M.L. Klein and J.A. Venables (Eds. ): Rare Gas Solids (Academic, New York, 1977).

Google Scholar

[20] H. M. Singer and J. H. Bilgram: Phys. Rev. E, submitted.

Google Scholar

[21] T. Abel, E. Brener, and H. Müller-Krumbhaar: Phys. Rev. E 55 (1997), p.7789.

Google Scholar

[22] A. A. Wheeler, B. T. Murray and R. J. Schaefer: Physica D 66 (1993), p.243.

Google Scholar

[23] A. Karma and W. -J. Rappel: Phys. Rev. E 57 (1998), p.4323.

Google Scholar