Three-Dimensional Single Crystal Morphologies of Diffusion Limited Growth in Experiments and Phase Field Simulations

Abstract:

Article Preview

In growth experiments for 3D xenon crystals we have observed three different morphologies: dendrites, doublons and seaweed. The 3D shape of dendrites and doublons is reconstructed by means of refractive reconstruction. Our measurements on the fin thickness of dendrites support the validity of analytical predictions by Brener. We have found that the fins of the doublon morphology can be fitted with the fin predictions for dendrites. Measurements of the doublon gap as a function of the supercooling show that the gap decreases hyperbolically with increasing supercooling. Phase field simulations of 3D doublons reveal that the channel shows an inner structure in the presence of anisotropy of surface tension. A combination of reconstructions and phase field simulations leads to a geometrical description of doublon cross sections.

Info:

Periodical:

Edited by:

A Roósz, M. Rettenmayr and Z. Gácsi

Pages:

105-110

DOI:

10.4028/www.scientific.net/MSF.508.105

Citation:

H.M. Singer and J.H. Bilgram, "Three-Dimensional Single Crystal Morphologies of Diffusion Limited Growth in Experiments and Phase Field Simulations ", Materials Science Forum, Vol. 508, pp. 105-110, 2006

Online since:

March 2006

Export:

Price:

$35.00

[1] V. Fleury, J.F. Gouyet, and M. Leonetti (Eds. ): Branching in nature (Springer, Berlin, 2001).

[2] C. Godrèche (Ed. ): Solids Far From Equilibrium (Cambridge University Press, Cambridge, 1992).

[3] E. Brener, H. Müller-Krumbhaar and D. Temkin: Phys. Rev. E 54 (1996), p.2714.

[4] E. Brener, H. Müller-Krumbhaar and D. Temkin and T. Abel: Physica A 249 (1998), p.73.

[5] S. Akamatsu, G. Faivre and T. Ihle: Phys. Rev. E 51 (1995), p.4751.

[6] I. Stalder and J.H. Bilgram: Europhys. Lett. 56 (2001), p.829.

[7] H. M. Singer and J. H. Bilgram: Phys. Rev. E, in print.

[8] H. M. Singer, I. Singer-Loginova, J. H. Bilgram and G. Amberg: J. Cryst. Growth, submitted.

[9] U. Bisang and J.H. Bilgram: Phys. Rev. E 54 (1996), p.5309.

[10] H. M. Singer and J. H. Bilgram: J. Cryst. Growth 261 (2004), p.122.

[11] G.B. McFadden, S.R. Coriell, and R.F. Sekerka: J. Cryst. Growth 208 (2000), p.726.

[12] E. Brener and D. Temkin: Phys. Rev. E 51 (1995), p.351.

[13] G. P. Ivantsov: Dokl. Akad. Nauk. SSSR 58 (1947), p.567.

[14] E. Brener: Phys. Rev. Lett. 71 (1993), p.3653.

[15] A. Karma, Y.H. Lee, and M. Plapp: Phys. Rev. E 61 (2000), p.3996.

[16] H. M. Singer and J. H. Bilgram: Europhys. Lett., in print.

[17] H. M. Singer and J. H. Bilgram: Phys. Rev. E 69 (2004), p.032601.

[18] A.C. Sinnock and B.L. Smith: Phys. Rev. 181 (1969), p.1297.

[19] M.L. Klein and J.A. Venables (Eds. ): Rare Gas Solids (Academic, New York, 1977).

[20] H. M. Singer and J. H. Bilgram: Phys. Rev. E, submitted.

[21] T. Abel, E. Brener, and H. Müller-Krumbhaar: Phys. Rev. E 55 (1997), p.7789.

[22] A. A. Wheeler, B. T. Murray and R. J. Schaefer: Physica D 66 (1993), p.243.

[23] A. Karma and W. -J. Rappel: Phys. Rev. E 57 (1998), p.4323.

In order to see related information, you need to Login.