On a Morphological Transition in Monotectic Solidification

Article Preview

Abstract:

Al-Bi and Al-In of exact monotectic composition were directionally solidified with solidification velocities ranging from 0.3 µm/sec to 5 µm/sec and temperature gradients from 2 K/mm to 6.5 K/mm. Three distinct microstuctures could be observed: fibers, strings of pearls or irregular arrays of second phase droplets. The transitions from fibers to strings of pearls is discussed theoretically and compared with the experimental results. The origin of this transition seems to be a Nichols and Mullins instability of the fibers during cooling from the monotectic to the eutectic temperature caused by surface perturbations driving volume diffusion of solute in the liquid fibers of the second phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-98

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Predel, J. Phase Equilibria 18 (1997) 327.

Google Scholar

[2] L. Ratke, D. Diefenbach, Mater. Sci. Eng. R 15 (1995) 263.

Google Scholar

[3] S.C. Sarson, J.A. Charles, Mater. Sci. Technology 9 (1993) 1049.

Google Scholar

[4] T.B. Massalski, ASM, Metals Park, Ohio, USA, Vol. 1 and 2, (1986).

Google Scholar

[5] M. Merkwitz, Ph.D. Thesis, Technische Universität Chemnitz, 1997, 147.

Google Scholar

[6] W. Hoyer, I. Kaban, M. Merkwitz, Proceeding Euromat (2003).

Google Scholar

[7] S. Sous, Ph.D. Thesis, Technische Hochschule Aachen and DLR Köln, 2000, 47-67.

Google Scholar

[8] J. Alkemper, S. Sous, C. Stöcker, L. Ratke, J. Cryst. Growth 191 (1998) 252-260.

Google Scholar

[9] B. Majumdar and K. Chattopadhyay, Metall. and Materials Trans. 27A (1996) 2053-(2057).

Google Scholar

[10] F.A. Nichols and W.W. Mullins, Trans. of the Met. Soc., AIME 233 (1965) 1840-1847.

Google Scholar

[11] B. Toloui, A. J. Macleod and D. D. Double, Proc. 4th Int. Conf. on In-Situ Composites, Elsevier, Amsterdam, 1982, 253-266.

Google Scholar

[12] A. Kamio, H. Tezuka, S. Kumai, S. Sueda and T. Takahashi, In Situ Composites IV, Mat. Res. Soc. Symp. Proc. 12 (1985), 253-266.

Google Scholar

[13] C. Stöcker, L. Ratke, J. Cryst. Growth 203 (1999) 582-593; 212 (2000) 324-333.

Google Scholar

[14] L. Ratke, Metall. and Materials Trans. 34A (2003) 449-457.

Google Scholar

[15] B. Derby and J. J. Favier, Acta Met., 31 (1983) 1123-1130.

Google Scholar

[16] S. Yang, W. Liu, J. Jia , J. Mater. Sci. 36 (2001), 5351-5355.

Google Scholar

[17] A. Kamio, H. Tezuka, S. Kumai, S. Sueda and T. Takahashi, J. Jpn. Inst. Met., 49 (1985) 677-683.

Google Scholar

[18] R. N. Grugel, T. A. Lograsso and A. Hellawell, Metall. Trans. 15A (1984) 1003-1011.

Google Scholar

[19] B. Vinet and C. Potard, J. Cryst. Growth 61 (1983) 355-361.

Google Scholar

[20] A. Kamio, S. Kumai and H. Tezuka, Mater. Sci. Eng. A 146 (1991) 105-121.

Google Scholar