Gravity-Induced Convection during Directional Solidification of Hypermonotectic Alloys

Article Preview

Abstract:

A two-phase volume-averaging model developed for the simulation of the dynamic decomposition and solidification of hypermonotectic alloys was used to study the occurrence of convection phenomena during directional solidification of a hypermonotectic alloy (Al-10 wt.%Bi) under terrestrial condition. The model accounts for nucleation and growth of secondary phase droplets, Marangoni and Stokes forces, solute partitioning, heat release due to decomposition and solidification. It is shown that the appearance and growth of secondary droplets is accompanied with a continuous downwards motion of droplets, which rapidly becomes unstable. After relaxation of this dynamic motion the advancing solidification front freezes in the resulting non-uniform droplet distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-198

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Prinz, A. Romero and L. Ratke: J. Mater. Sci. Vol. 30(1995), p.4715.

Google Scholar

[2] J. Alkemper and L. Ratke: Z. Metallkd. Vol. 85 (1994), p.365.

Google Scholar

[3] L. Ratke, G. Korekt and S. Drees: Adv. Space Res. Vol. 22 (1998, p.1227.

Google Scholar

[4] L. Ratke and G. Korekt: Z. Metallkd. Vol. 91 (2000), p.919.

Google Scholar

[5] H.U. Walter: Proc. RIT/ESA/SSC Workshop: ESA SP 219 ed Järva Krog (Noordwijk, Sweden 1984), p.47.

Google Scholar

[6] C. Beckermann and R. Viskanta: Appl. Mech. Rev. Vol. 46 (1993), p.1.

Google Scholar

[7] J. Ni and C. Beckermann: Metall. Trans. Vol. 22B (1991), p.349.

Google Scholar

[8] C.Y. Wang and C. Beckermann: Metall. Mater. Trans. Vol. 27A (1996), p.2754.

Google Scholar

[9] C.Y. Wang and C. Beckermann: Metall. Mater. Trans. Vol. 27A (1996), p.2765.

Google Scholar

[10] C.Y. Wang and C. Beckermann: Metall. Mater. Trans. Vol. 27A (1996), p.2784.

Google Scholar

[11] C. Beckermann: JOM Vol. 49 (1997), p.13.

Google Scholar

[12] A.V. Reddy and C. Beckermann: Metall. Mater. Trans. Vol. 28B (1997), p.479.

Google Scholar

[13] A. Ludwig and M. Wu: Metall. Mater. Trans. Vol. 33A (2002), p.3673.

Google Scholar

[14] M. Wu, A. Ludwig, P.R. Sahm and A. Bührig-Polaczek: Proc. MCWASP X ed D M Stefanescu et al (Warrendale, PA: Minerals, Metals and Materials Society 2003), p.261.

Google Scholar

[15] M. Wu, A. Ludwig, A. Bührig-Polaczek, M. Fehlbier and P.R. Sahm: Inter. J. Heat Mass Transfer Vol. 46 (2002), p.2819.

DOI: 10.1016/s0017-9310(03)00054-1

Google Scholar

[16] M. Wu, A. Ludwig and L. Ratke: Modell. Simu. Mater. Sci. Eng. Vol. 11 (2003), P. 755.

Google Scholar

[17] M. Wu, A. Ludwig and L. Ratke: Metall. Mater. Trans. Vol. 34A (2003), p.3009.

Google Scholar

[18] M. Wu and A. Ludwig: Adv. Eng. Mater. Vol. 5, No. 1 (2003), p.62.

Google Scholar

[19] H. Fujii, T. Kimura, H. Kitaguchi, H. Kumakura and K. Togano: J. Mater. Sci. Vol. 30 (1995), p.3429.

Google Scholar