Monotectic Growth: Unanswered Questions

Article Preview

Abstract:

Early solidification experiments in immiscible alloy systems almost immediately led to conflicting findings between investigators. Investigations revealed that several factors usually considered unimportant, especially the interfacial energy relationships between phases, could have a dramatic influence on the types of microstructures produced in immiscible alloy systems. During the 1980s, work concentrated on the influence interfacial energy on microstructure. However, some findings raised new questions. In the mid 1990s and continuing through today, most efforts have focused on modeling the monotectic growth process and on obtaining steady state coupled growth conditions in hypermonotectic alloys. This paper focuses on some of the advances that have been made to date in understanding solidification in immiscible alloy systems and some of the questions that remain to be answered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. Reger: Interim Report, Contract NAS8-28267 NASA Marshall Space Flight Center, TRW System Group, Redondo Beach, CA., (1973).

Google Scholar

[2] R. J. Knight, Che-Yu Li, and C. W. Spencer, Trans. Metall. Soc. Amer. Inst. Min. (Metall. ) Engrs. Vol. 227 (1963), p.18.

Google Scholar

[3] F. D. Lemky and J. A. Ford, J. Metal, N. Y. Vol. 17 (1965), p.91.

Google Scholar

[4] R. T. Delves, Brit. J. Appl. Phys. Vol. 16 (1965), p.343.

Google Scholar

[5] G. A. Chadwick, Brit. J. Appl. Phys. Vol. 16 (1965), p.1095.

Google Scholar

[6] J. D. Livingston, H. E. Cline, Trans. Metall. Soc. of AIME Vol. 245 (1969), p.351.

Google Scholar

[7] J. W. Cahn, Metall. Trans. A Vol. 10A (1979), p.119.

Google Scholar

[8] R. N. Grugel and A. Hellawell, Metall. Trans. A Vol. 12A (1981), p.669.

Google Scholar

[9] R. N. Grugel and A. Hellawell, Metall. Trans. A Vol. 13A (1982), p.493.

Google Scholar

[10] C. Schaefer, M. H. Johnston, and R. A. Parr, Acta Metall. Vol. 31 (1983), p.1221.

Google Scholar

[11] B. Derby, C. Camel, and J. J. Favier, J. Crystal Growth Vol. 65 (1983), p.280.

Google Scholar

[12] A. Bergman and H. Fredriksson, Materials Processing in the Reduced Gravity Environment of Space, ed. G. E. Rindone, (Elsevier Science Publishing Company, Inc. 1982), p.563.

Google Scholar

[13] R. N. Grugel and A. Hellawell, Metall. Trans. A Vol. 15A (1984), p.1626.

Google Scholar

[14] B. Toloui, A. J. Macleod, and D. D. Double, In Situ Composites IV, eds. P. D. Lemkey, M. E. Cline, M. McLean, (Elsevier Science Publishing Co., Inc. 1982), p.253.

Google Scholar

[15] A. Kamio, H. Tezuka, S. Kumai, and T. Takahashi, Trans. Japan Inst. of Metal Vol. 25 (1984), p.569.

Google Scholar

[16] R. N. Grugel, T. A. Lograsso, and A. Hellawell, Metall. Trans. A Vol. 15A (1984), p.1003.

Google Scholar

[17] B. Vinet and C. Potard, J. Crystal Growth Vol. 61 (1983), p.355.

Google Scholar

[18] A. Kamio, S. Kumai, H. Tezuka, Mater. Sci. Eng. A Vol. 146 (1991), p.105.

Google Scholar

[19] J. B. Andrews, A. C. Sandlin, and R. A. Merrick, Adv. in Space Research, Vol. 11 (1991), p. (7)291.

Google Scholar

[20] A. C. Sandlin, J. B. Andrews, and P. A. Curreri, Metall. Trans. A Vol. 19A (1988), p.2665.

Google Scholar

[21] A. C. Sandlin, J. B. Andrews, and P. A. Curreri, Proc. VIIth European Symp. in Materials and Fluid Sciences in Microgravity, Oxford, England, (1989).

Google Scholar

[22] R. A. Merrick, J. B. Andrews, Proceedings of the 4th International Conference On Experimental Methods for Microgravity Materials Research, TMS, Warrendale, PA, (1992), p.7.

Google Scholar

[23] L.J. Hayes and J.B. Andrews, Solidification and Gravity, Transtec Publications, Vol. 215-216, (1996), p.283.

Google Scholar

[24] J. B. Andrews, L. J. Hayes, Y. Arikawa, S. R. Coriell, Adv. in Space Research Vol. 22 (1997), p.1241.

Google Scholar

[25] J. Barry Andrews, L. J. Hayes, Y. Arikawa and S. R. Coriell, Materials in Space-Science, Technology and Exploration, MRS Symposium Proceedings Vol. 551, ed. A. F. Hepp, J. M. Prahl, T. G. Keith, S. G. Bailey, J. R. Fowler (1999), p.255.

Google Scholar

[26] B. Derby and J. J. Favier, Acta Metall. Vol. 31, No. 7 (1983), p.1123.

Google Scholar

[27] K. A. Jackson and J. D. Hunt, Trans. Metall. Soc. of AIME Vol. 236 (1966), p.1129.

Google Scholar

[28] S. R. Coriell, W. F. Mitchell, B. T. Murray, J. B. Andrews, Y. Arikawa, J. Crystal Growth Vol. 179 (1997), p.647.

Google Scholar

[29] C. Stoker, L. Ratke, J. Crystal Growth Vol. 203 (1999), p.582.

Google Scholar

[30] S. R. Coriell, G. B. McFadden, W. F. Mitchell, B. T. Murray, J. B. Andrews, Y. Arikawa, J. Crystal Growth Vol. 224 (2001), p.145.

DOI: 10.1016/s0022-0248(01)00724-2

Google Scholar

[31] C. Stoker, L. Ratke, J. Crystal Growth Vol. 212 (1999), p.324.

Google Scholar

[32] B. Nestler, A. A. Wheeler, L. Ratke, C. Stocker, Physica D Vol. 141 (2000), p.133.

Google Scholar