Microstructures Observed during Directional Solidification along the Univariant Eutectic Reaction in a Ternary Al-Cu-Si Alloy

Article Preview

Abstract:

Within the frame of the ESA research program SETA, “Solidification along a Eutectic Path in Ternary Alloys”, experiments have been performed focussing on several distinct subtopics. One of these subtopics is to study coupled growth along the univariant eutectic reaction: L → α + β. In this paper, the influence of the growth velocity v on the morphology of the solid/liquid interface is evaluated in a ternary Al-Cu-Si alloy with a composition close to the univariant eutectic groove L → α(Al) + θ-Αl2Cu. Different structural regions can be identified in terms of the stability of the solid-liquid interface (morphological stability) and the stability of the coupling (competitive growth) during unidirectional solidification as function of the solidification parameters. It is found that two-phase planar growth with a lamellar arrangement can be obtained at a sufficiently low growth rate v. The measured interlamellar spacing follows the Jackson and Hunt relationship λ2v = constant. At a higher growth velocity first a destabilisation of the solid/liquid interface is observed and finally competitive growth is observed revealing primary θ-Al2Cu growing ahead of the eutectic interface. It is assumed that the cellular break-up is a two-step process related to the crystallography of the system. Fitting the different morphologies into one microstructure map, an extension of the coupled zone concept as has been proposed for binary alloys is necessary.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Chilton and W.C. Winegard: J. Inst. Met. Vol. 89 (1960-61), p.162.

Google Scholar

[2] G.A. Chadwick: Progress in Materials Science Vol. 10 (1963), p.99.

Google Scholar

[3] G.S. Cole and W.C. Winegard: J. Inst. Met. Vol. 92 (1963), p.322.

Google Scholar

[4] S. Yaneva, S. Budurov, N. Stoichev, S. Christova and S. Ionchev: Kristall und Technik Vol. 10 (1975), p.395.

DOI: 10.1002/crat.19750100408

Google Scholar

[5] C. Yuyong, A. Geying, G. Genda and L. Qingchun: Mat. Sc. Forum Vol. 77 (1991), p.219.

Google Scholar

[6] H.Q. Bao and F.C.L. Durand: J. Cryst. Growth Vol. 15 (1972), p.291.

Google Scholar

[7] P.J. Fehrenbach, H.W. Kerr and P. Niessen: J Crystal Growth Vol. 16 (1972), p.209.

Google Scholar

[8] J.D. Holder and B.F. Oliver: Met. Trans. Vol 5 (1974), p.2423.

Google Scholar

[9] J. De Wilde, L. Froyen and S. Rex: Scripta Mat. Vol. 51 (2004), p.533.

Google Scholar

[10] G. Garmong: Metall. Trans. Vol. 2 (1971), p. (2025).

Google Scholar

[11] P.J. Fehrenbach, H.W. Kerr and P. Niessen: J. Crystal Growth Vol. 16 (1972), p.209.

Google Scholar

[12] F.W. Schnake and G.A. Varschavsky: Mat. Char. Vol. 39 (1997), p.345.

Google Scholar

[13] M.D. Rinaldi, R.M. Sharp and M.C. Flemings: Met. Trans. Vol. 3 (1972), p.3133.

Google Scholar

[14] M.D. Rinaldi, R.M. Sharp and M.C. Flemings: Met. Trans. Vol. 3 (1972), p.3139.

Google Scholar

[15] H.W. Kerr, A. Plumtree and W.C. Winegard: J. Inst. Met. Vol. 93 (1964 - 65), p.63.

Google Scholar

[16] H.W. Kerr, J.A. Bell and W.C. Winegard: J. Aust. Inst. Met. Vol. 10 (1965), p.64.

Google Scholar

[17] D.J.S. Cooksey and A. Hellawel: J. Inst. Met. Vol. 95 (1967), p.183.

Google Scholar

[18] H. Kabassis, J.W. Rutter and W.C. Winegard: Metall. Trans. A Vol. 15A (1984), p.1515.

Google Scholar

[19] L. Snugovsky, D.D. Perovic, J.W. Rutter, Mater. Sci. Technol. 16 (2000) 979.

Google Scholar

[20] C.T. Rios, S. Milenkovic, R. Caram, J. Crystal Growth 211 (2000) 466.

Google Scholar

[21] C.T. Rios, S. Milenkovic, S. Gama, R. Caram, J. Crystal Growth 237-239 (2002) 90.

Google Scholar

[22] D.G. McCartney, J.D. Hunt and R.M. Jordan: Metall. Trans. A Vol. 11A (1980), p.1243.

Google Scholar

[23] D.G. McCartney, R.M. Jordan and J.D. Hunt: Metall. Trans. A Vol. 11A (1980), p.1251.

Google Scholar

[24] L. van Vugt and L. Froyen: Microgravity Sci. Technol. Vol. X/2 (1997), p.95.

Google Scholar

[25] G.A. Chadwick: J. Inst. Met. Vol. 91 (1962), p.169.

Google Scholar

[26] J.P. Chilton and W.C. Winegard: J. Inst. Met. Vol. 89 (1961), p.162.

Google Scholar

[27] K.A. Jackson and J.D. Hunt: Trans. Metal. Soc. AIME Vol. 236 (1966), p.1129.

Google Scholar

[28] U. Hecht, A. Drevermann, V. Witusiewicz and S. Rex: private communication (2004).

Google Scholar