Fabrication of Ceramic Microchannels with Tailored Pores

Article Preview

Abstract:

This paper reports fabrication of high temperature stable, chemically inert SiC and SiCN monolithic porous microchannels by micromolding in capillaries (MIMIC) method. These types of high surface area materials hold tremendous untapped potential in micro-total analysis systems, micro-reaction technology and clean energy systems. Owing to their excellent durability under harsh conditions, SiC and SiCN micro-components are imperative in fields like fuel cells, for hydrogen generation and as environmental sensors. The report also describes the use of template particles of different size and type with diameter of ranging from 0.5 to 1.5 µm to prepare porous, high temperature stable ceramic microchannels. In the present work, ceramic porous channels have been fabricated via polymer to ceramic conversion route by using commercially available polymer precursors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Pages:

1030-1037

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Madou, Fundamental of Microfabrication (CRC Press, New York, 1997).

Google Scholar

[2] L.A. Liew, W. Zhang, L. An, S. Shah, R. Luo Y. Liu, T. Cross, K. Anseth, M.L. Dunn, V.M. Bright, J.W. Daily and R. Raj: Am. Cera. Soc. Bull. Vol. 80 (2001), p.25.

Google Scholar

[3] L. An. Liew, V.M. Bright and R. Raj, Sen. Actu. A Vol. 104 (2003), p.246.

Google Scholar

[4] I-K. Song, Christain, M. Mitchell, D-P. Kim and P. J. A. Kenis, Adv. Funct. Mater. Vol. 15 (2005), p.1336.

Google Scholar

[5] M. Mehregany, C.A. Zorman, N. Rajan and C. H. Wu, IEEE Vol. 86 (1998), p.1594.

Google Scholar

[6] H. Yang, P. Deschatelets, S.T. Brittain and G.M. Whitesides, Adv. Mater. Vol. 13 (2001), p.54.

Google Scholar

[7] I-K. Song, S-B. Yoon, J-S. Yu and D-P. Kim, Chemical Communication Vol. 14 (2002), p.1480.

Google Scholar

[8] K-H. Park, I-K. Song and D-P. Kim, Journal of Materials Chemistry Vol. 14 (2004), p.3436.

Google Scholar

[9] A.I. Stankiewicz and J.A. Moulijn, Process intensification: Transforming chemical engineering, Chemical Engineering Progress (2000), p.22.

Google Scholar

[10] W. Liu, A.I. Ch.E. Journal Vol. 48 (2002), p.1519.

Google Scholar

[11] B. Gates and Y. Xia, Adv. Mater. Vol. 12 (2000), p.1329.

Google Scholar

[12] T. Witula and K. Holmberg, Langmuir Vol. 21 (2005), p.3782.

Google Scholar

[13] N.D. Ostryanina, O.V. Ilina and T.B. Tennikova, J. Chromatogr. B. Vol. 770 (2002), p.35.

Google Scholar

[14] Q. Luo, H. Zou, X. Xiao, Z. Guo, L. Kong and X. Mao, J. Chromatogr. A. Vol. 926 (2001), p.255.

Google Scholar

[15] Q. Luo, H. Zou, Q. Zhang, X. Xiao and J. Ni, Biotechnol. Bioeng. Vol. 80 (2002), p.481.

Google Scholar

[16] L. Uzun, H. Yavuz, R. Say, A. Ersöz and A. Denizli, Ind. Eng. Chem. Res. Vol. 43 (2004), p.6513.

DOI: 10.1021/ie040045z

Google Scholar

[17] J. Williams, Cata. Today Vol. 69 (2001), p.3.

Google Scholar

[18] D. C. Duffy, J. C. McDonald, O. J. A. Schueller and G. M. Whitesides, Anal. Chem. Vol. 70 (1998), p.4974.

Google Scholar

[19] F. Berndt, P. Jahn, A. Rendtel, G. Motz and G. Ziegler, Key Engin. Mater. Vol. 206-213 (2002), p. (1927).

DOI: 10.4028/www.scientific.net/kem.206-213.1927

Google Scholar