Synthesis of Polymeric Precursor for Oxidation-Resistant SiCBN Ceramic Microstructure via Soft Lithography

Article Preview

Abstract:

Microelectromechanical systems (MEMS) including microchemical devices have been widely concerned, in particular, when made of an extremely stable ceramic material for their use at harsh conditions. SiCBN preceramic polymer was derived from borazine (B3N3H6) modified allylhydridopolycarbosilane (AHPCS) via hydroboration of allyl groups with B-H groups at 0oC for 24 h by following the standard Schenk technique. The extent of polymer-to-ceramic conversion with an ultimate ceramic yield of 92 wt% was investigated by simultaneous TGA, 1H, 13C-NMR, IR, and XRD measurements. The polymer-derived SiCBN ceramic remained as an amorphous solid up to 1400oC. The ceramic product obtained after pyrolysis at 1000-1400oC exhibited excellent oxidation resistance in air. In addition, ceramic microstructures were fabricated by employing soft lithographic technique.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Pages:

774-777

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Riedel, A. Kienzle, W. Dressler, L. M. Ruwisch, J. Bill and F. Aldinger: Nature, 382 (1996) 796.

DOI: 10.1038/382796a0

Google Scholar

[2] M. Weinmannn, T. W. Kamphowe, J. Schuhmacher, K. Müller and F. Aldinger: Chem. Mater., 12 (2000) 2112.

Google Scholar

[3] M. Takamizawa, T. Kobayashi, A. Hayashida and Y. Takeda: U.S. Patent 4, 604, 367 (1986).

Google Scholar

[4] D. Seyferth and H. Plenio: J. Am. Ceram. Soc. 73 (1990) 2131.

Google Scholar

[5] K. Su, E. E. Remsen, G. A. Zank, L. G. Sneddon: Chem. Mater. 5 (1993) 547.

Google Scholar

[6] Q. D. Nghiem, J. K. Jeon, L. Y. Hong and D. P. Kim: J. Organometal. Chem., 688 (2003) 27-35.

Google Scholar

[7] H. Yang, P. Deschatelets, S. T. Brittain, and G. M. Whiteside: Adv. Mater. 13 (2001) 54.

Google Scholar

[8] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, L. J. Zhuang: Vac. Sci. Technol. B, 15 (1997) 2897.

Google Scholar

[9] D. F. Shriver, M. A. Drezdz, The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York (1986).

Google Scholar

[10] K. T. Moon, D. S. Min and D. P. Kim: Bull. Kor. Chem. Soc., 19 (1998) 222.

Google Scholar

[11] T. W. Odom, J. Christopher Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides: Langmuir, 18 (2002) 5314-5320.

Google Scholar

[12] W. R. Schmidt, D. M. Narsavage-Heald, D. M. Jones, P. S. Marchetti, D. Raker and G. E. Maciel: Chem. Mater., 11 (1999).

DOI: 10.1021/cm980558u

Google Scholar